Lógica Digital (1001351)

Funções e Circuitos Lógicos

Prof. Ricardo Menotti menotti@ufscar.br

Atualizado em: 19 de março de 2024

Departamento de Computação Centro de Ciências Exatas e de Tecnologia Universidade Federal de São Carlos Prof. Luciano de Oliveira Neris Ineris@ufscar.br

Variáveis e Funções

Uma variável binária

(a) Two states of a switch

(b) Symbol for a switch

Figure 2.1 A binary switch.

Uma variável binária

(a) Simple connection to a battery

(b) Using a ground connection as the return path

Figure 2.2 A light controlled by a switch.

Funções lógicas E (série) e OU (paralelo)

(a) The logical AND function (series connection)

$$L(x_1, x_2) = x_1.x_2$$

onde
 $L = 1$ se $x_1 = 1$ **E** $x_2 = 1$,
 $L = 0$ caso contrário.

$$L(x_1, x_2) = x_1 + x_2$$

onde
 $L = 1$ se $x_1 = 1$ OU $x_2 = 1$ OU
 $x_1 = x_2 = 1$,
 $L = 0$ se $x_1 = x_2 = 0$.

(b) The logical OR function (parallel connection)

Combinando as funções

Figure 2.4 A series-parallel connection.

$$L(x_1, x_2, x_3) = (x_1 + x_2).x_3$$

Função lógica NÃO (inversão ou complemento)

Figure 2.5 An inverting circuit.

representações possíveis:
$$\overline{x}=x'=!x=\sim x=\mathsf{NOT}x$$
 para $f(x_1,x_2)=x_1+x_2$, temos seu complemento $\overline{f}(x_1,x_2)=\overline{x_1+x_2}$ $=(x_1+x_2)'=!(x_1+x_2)=\sim(x_1+x_2)=\mathsf{NOT}(x_1+x_2)$

<i>x</i> ₁	<i>X</i> ₂	<i>x</i> ₁ . <i>x</i> ₂	$x_1 + x_2$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Tabela Verdade para as funções lógicas AND e OR

Lógica Proposicional

prop	osições	negação	conjunção	disjunção	implicação	equivalência
р	q	$\sim p$	$p \wedge q$	$p \lor q$	p o q	$p \Leftrightarrow q$
0	0		0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1		1	1	1	1

Tabela Verdade para os conectivos lógicos

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>x</i> ₁ . <i>x</i> ₂ . <i>x</i> ₃	$x_1 + x_2 + x_3$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Funções lógicas AND e OR com três entradas

<i>x</i> ₁	<i>x</i> ₂	$x_1 + x_2$	$\overline{x_1 + x_2}$	$\overline{x_1}$	<u>X2</u>	$\overline{x_1} + \overline{x_2}$
0	0	0	1			
0	1	1	0			
1	0	1	0			
1	1	1	0			

Provando que
$$\overline{f}(x_1,x_2) = \overline{x_1 + x_2} \neq \overline{x_1} + \overline{x_2}$$

<i>x</i> ₁	<i>x</i> ₂	$x_1 + x_2$	$\overline{x_1 + x_2}$	<u>X1</u>	<u>X2</u>	$\overline{x_1} + \overline{x_2}$
0	0	0	1	1	1	
0	1	1	0	1	0	
1	0	1	0	0	1	
1	1	1	0	0	0	

Provando que
$$\overline{f}(x_1, x_2) = \overline{x_1 + x_2} \neq \overline{x_1} + \overline{x_2}$$

<i>x</i> ₁	<i>x</i> ₂	$x_1 + x_2$	$\overline{x_1 + x_2}$	<u>X1</u>	<u>X2</u>	$\overline{x_1} + \overline{x_2}$
0	0	0	1	1	1	1
0	1	1	0	1	0	1
1	0	1	0	0	1	1
1	1	1	0	0	0	0

Provando que
$$\overline{f}(x_1,x_2)=\overline{x_1+x_2}
eq \overline{x_1}+\overline{x_2}$$

 As funções lógicas AND, OR e NOT podem ser usadas para implementar funções lógicas de qualquer complexidade;

- As funções lógicas AND, OR e NOT podem ser usadas para implementar funções lógicas de qualquer complexidade;
- Uma função complexa pode exigir muitas dessas operações básicas para sua implementação;

- As funções lógicas AND, OR e NOT podem ser usadas para implementar funções lógicas de qualquer complexidade;
- Uma função complexa pode exigir muitas dessas operações básicas para sua implementação;
- Cada operação lógica pode ser implementada eletronicamente com transistores, resultando em um elemento de circuito chamado de porta lógica;

- As funções lógicas AND, OR e NOT podem ser usadas para implementar funções lógicas de qualquer complexidade;
- Uma função complexa pode exigir muitas dessas operações básicas para sua implementação;
- Cada operação lógica pode ser implementada eletronicamente com transistores, resultando em um elemento de circuito chamado de porta lógica;
- Uma porta lógica tem uma ou mais entradas e uma saída que é uma função de suas entradas;

- As funções lógicas AND, OR e NOT podem ser usadas para implementar funções lógicas de qualquer complexidade;
- Uma função complexa pode exigir muitas dessas operações básicas para sua implementação;
- Cada operação lógica pode ser implementada eletronicamente com transistores, resultando em um elemento de circuito chamado de porta lógica;
- Uma porta lógica tem uma ou mais entradas e uma saída que é uma função de suas entradas;
- Podemos projetar um circuito lógico desenhando um esquemático, consistindo de símbolos gráficos representando as portas lógicas.

(a) AND gates

(b) OR gates

(c) NOT gate

Figure 2.9 The function from Figure 2.4.

Síntese de uma função lógica

(d) Network that implements $g = \bar{x}_1 + x_2$

Funções lógicas equivalentes

- Em geral, uma função lógica pode ser implementada com uma variedade de circuitos com diferentes custos;
- As funções lógicas vistas anteriormente são funcionalmente equivalentes;
- É possível notar a equivalência a partir da análise dos circuitos e contrução das tabelas verdade;
- 0 mesmo resultado pode ser alcançado através da manipulação algébrica de expressões lógicas, que fornece a base para técnicas modernas de projeto.

Função XOR

Figure 2.11 An example of a logic circuit.

Aplicação: meio somador

(a) Evaluation of S = a + b

Figure 2.12 Addition of binary numbers.

$$S_0 = f(a, b) = a \oplus b$$

$$S_1 = f(a, b) = a.b$$

Bibliografia

Bibliografia

- Brown, S. & Vranesic, Z. Fundamentals of Digital Logic with Verilog Design, 3rd Ed., Mc Graw Hill, 2009
- http://ecalculo.if.usp.br/ferramentas/logica/logica.htm

Lógica Digital (1001351)

Funções e Circuitos Lógicos

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Luciano de Oliveira Neris Ineris@ufscar.br

Atualizado em: 19 de março de 2024

Departamento de Computação Centro de Ciências Exatas e de Tecnologia Universidade Federal de São Carlos