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18 C H A P T E R 2 • Introduction to Logic Circuits

The study of logic circuits is motivated mostly by their use in digital computers. But such circuits also form
the foundation of many other digital systems where performing arithmetic operations on numbers is not of
primary interest. For example, in a myriad of control applications actions are determined by some simple
logical operations on input information, without having to do extensive numerical computations.

Logic circuits perform operations on digital signals and are usually implemented as electronic circuits
where the signal values are restricted to a few discrete values. In binary logic circuits there are only two
values, 0 and 1. In decimal logic circuits there are 10 values, from 0 to 9. Since each signal value is naturally
represented by a digit, such logic circuits are referred to as digital circuits. In contrast, there exist analog
circuits where the signals may take on a continuous range of values between some minimum and maximum
levels.

In this book we deal with binary circuits, which have the dominant role in digital technology. We hope to
provide the reader with an understanding of how these circuits work, how are they represented in mathematical
notation, and how are they designed using modern design automation techniques. We begin by introducing
some basic concepts pertinent to the binary logic circuits.

2.1 Variables and Functions

The dominance of binary circuits in digital systems is a consequence of their simplicity,
which results from constraining the signals to assume only two possible values. The simplest
binary element is a switch that has two states. If a given switch is controlled by an input
variable x, then we will say that the switch is open if x = 0 and closed if x = 1, as illustrated
in Figure 2.1a. We will use the graphical symbol in Figure 2.1b to represent such switches
in the diagrams that follow. Note that the control input x is shown explicitly in the symbol.
In Chapter 3 we will explain how such switches are implemented with transistors.

Consider a simple application of a switch, where the switch turns a small lightbulb
on or off. This action is accomplished with the circuit in Figure 2.2a. A battery provides
the power source. The lightbulb glows when sufficient current passes through its filament,
which is an electrical resistance. The current flows when the switch is closed, that is, when
x = 1. In this example the input that causes changes in the behavior of the circuit is the

x =  0 x =  1

(a) Two states of a switch

S

x

(b) Symbol for a switch

Figure 2.1 A binary switch.
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(a) Simple connection to a battery

S

x

(b) Using a ground connection as the return path

LBattery Light

x
Power
supply

S

L

Figure 2.2 A light controlled by a switch.

switch control x. The output is defined as the state (or condition) of the light L. If the light
is on, we will say that L = 1. If the the light is off, we will say that L = 0. Using this
convention, we can describe the state of the light L as a function of the input variable x.
Since L = 1 if x = 1 and L = 0 if x = 0, we can say that

L(x) = x

This simple logic expression describes the output as a function of the input. We say that
L(x) = x is a logic function and that x is an input variable.

The circuit in Figure 2.2a can be found in an ordinary flashlight, where the switch is a
simple mechanical device. In an electronic circuit the switch is implemented as a transistor
and the light may be a light-emitting diode (LED). An electronic circuit is powered by
a power supply of a certain voltage, perhaps 5 volts. One side of the power supply is
connected to ground, as shown in Figure 2.2b. The ground connection may also be used as
the return path for the current, to close the loop, which is achieved by connecting one side
of the light to ground as indicated in the figure. Of course, the light can also be connected
by a wire directly to the grounded side of the power supply, as in Figure 2.2a.

Consider now the possibility of using two switches to control the state of the light. Let
x1 and x2 be the control inputs for these switches. The switches can be connected either
in series or in parallel as shown in Figure 2.3. Using a series connection, the light will be
turned on only if both switches are closed. If either switch is open, the light will be off.
This behavior can be described by the expression

L(x1, x2) = x1 · x2

where L = 1 if x1 = 1 and x2 = 1,

L = 0 otherwise.

The “·” symbol is called the AND operator, and the circuit in Figure 2.3a is said to implement
a logical AND function.

3
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(a) The logical AND function (series connection)

S

x1 L
Power
supply

S

x2

S

x1

L
Power
supply S

x2

(b) The logical OR function (parallel connection)

Light

Light

Figure 2.3 Two basic functions.

The parallel connection of two switches is given in Figure 2.3b. In this case the light
will be on if either x1 or x2 switch is closed. The light will also be on if both switches are
closed. The light will be off only if both switches are open. This behavior can be stated as

L(x1, x2) = x1 + x2

where L = 1 if x1 = 1 or x2 = 1 or if x1 = x2 = 1,

L = 0 if x1 = x2 = 0.

The + symbol is called the OR operator, and the circuit in Figure 2.3b is said to implement
a logical OR function.

In the above expressions for AND and OR, the output L(x1, x2) is a logic function with
input variables x1 and x2. The AND and OR functions are two of the most important logic
functions. Together with some other simple functions, they can be used as building blocks

S

x1

L
Power
supply S

x2

Light

S

x3

Figure 2.4 A series-parallel connection.

L(x1, x2) = x1.x2

onde
L = 1 se x1 = 1 E x2 = 1,
L = 0 caso contrário.

L(x1, x2) = x1 + x2

onde
L = 1 se x1 = 1 OU x2 = 1 OU
x1 = x2 = 1,
L = 0 se x1 = x2 = 0.
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S

x1

Power
supply S

x2

Light

S

x3

Figure 2.4 A series-parallel connection.

Sx Light
Power
supply

R

Figure 2.5 An inverting circuit.

used to control the light in a more complex way. This series-parallel connection of switches
realizes the logic function

L(x1, x2, x3) = (x1 + x2) · x3

The light is on if x3 = 1 and, at the same time, at least one of the x1 or x2 inputs is equal
to 1.

2.2 Inversion

So far we have assumed that some positive action takes place when a switch is closed, such
as turning the light on. It is equally interesting and useful to consider the possibility that a
positive action takes place when a switch is opened. Suppose that we connect the light as
shown in Figure 2.5. In this case the switch is connected in parallel with the light, rather
than in series. Consequently, a closed switch will short-circuit the light and prevent the
current from flowing through it. Note that we have included an extra resistor in this circuit
to ensure that the closed switch does not short-circuit the power supply. The light will be
turned on when the switch is opened. Formally, we express this functional behavior as

L(x) = x

where L = 1 if x = 0,

L = 0 if x = 1

L(x1, x2, x3) = (x1 + x2).x3

5
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for the implementation of all logic circuits. Figure 2.4 illustrates how three switches can be
used to control the light in a more complex way. This series-parallel connection of switches
realizes the logic function

L(x1, x2, x3) = (x1 + x2) · x3

The light is on if x3 = 1 and, at the same time, at least one of the x1 or x2 inputs is equal
to 1.

2.2 Inversion

So far we have assumed that some positive action takes place when a switch is closed, such
as turning the light on. It is equally interesting and useful to consider the possibility that a
positive action takes place when a switch is opened. Suppose that we connect the light as
shown in Figure 2.5. In this case the switch is connected in parallel with the light, rather
than in series. Consequently, a closed switch will short-circuit the light and prevent the
current from flowing through it. Note that we have included an extra resistor in this circuit
to ensure that the closed switch does not short-circuit the power supply. The light will be
turned on when the switch is opened. Formally, we express this functional behavior as

L(x) = x
where L = 1 if x = 0,

L = 0 if x = 1

The value of this function is the inverse of the value of the input variable. Instead of
using the word inverse, it is more common to use the term complement. Thus we say that
L(x) is a complement of x in this example. Another frequently used term for the same
operation is the NOT operation. There are several commonly used notations for indicating
the complementation. In the preceding expression we placed an overbar on top of x. This
notation is probably the best from the visual point of view. However, when complements
are needed in expressions that are typed using a computer keyboard, which is often done
when using CAD tools, it is impractical to use overbars. Instead, either an apostrophe is

Sx L
Power
supply

R

Figure 2.5 An inverting circuit.

L(x) = x

onde
L = 1 se x = 0,
L = 0 se x = 1.

representações possíveis: x = x ′ = !x = ∼ x = NOTx
para f (x1, x2) = x1 + x2, temos seu complemento f (x1, x2) = x1 + x2

= (x1 + x2)
′ = !(x1 + x2) = ∼ (x1 + x2) = NOT(x1 + x2) 6



Tabela Verdade

x1 x2 x1.x2 x1 + x2

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

Tabela Verdade para as funções lógicas AND e OR
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Lógica Proposicional

proposições negação conjunção disjunção implicação equivalência

p q ∼ p p ∧ q p ∨ q p → q p ⇔ q

0 0 0 0 1 1
0 1 1 0 1 1 0
1 0 0 0 1 0 0
1 1 1 1 1 1

Tabela Verdade para os conectivos lógicos
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Tabela Verdade

x1 x2 x3 x1.x2.x3 x1 + x2 + x3

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Funções lógicas AND e OR com três entradas
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Tabela Verdade

x1 x2 x1 + x2 x1 + x2 x1 x2 x1 + x2

0 0 0 1

1 1 1

0 1 1 0

1 0 1

1 0 1 0

0 1 1

1 1 1 0

0 0 0

Provando que f (x1, x2) = x1 + x2 ̸= x1 + x2
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Tabela Verdade

x1 x2 x1 + x2 x1 + x2 x1 x2 x1 + x2

0 0 0 1 1 1

1

0 1 1 0 1 0

1

1 0 1 0 0 1

1

1 1 1 0 0 0

0

Provando que f (x1, x2) = x1 + x2 ̸= x1 + x2
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Tabela Verdade

x1 x2 x1 + x2 x1 + x2 x1 x2 x1 + x2

0 0 0 1 1 1 1
0 1 1 0 1 0 1
1 0 1 0 0 1 1
1 1 1 0 0 0 0

Provando que f (x1, x2) = x1 + x2 ̸= x1 + x2
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Portas Lógicas e Circuitos Lógicos

• As funções lógicas AND, OR e NOT podem ser usadas para implementar funções
lógicas de qualquer complexidade;

• Uma função complexa pode exigir muitas dessas operações básicas para sua
implementação;

• Cada operação lógica pode ser implementada eletronicamente com transistores,
resultando em um elemento de circuito chamado de porta lógica;

• Uma porta lógica tem uma ou mais entradas e uma saída que é uma função de
suas entradas;

• Podemos projetar um circuito lógico desenhando um esquemático, consistindo de
símbolos gráficos representando as portas lógicas.
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x1 x2 … xn+ + +
x1
x2

x1 x2+

x1
x2

xn

x1
x2

x1 x2⋅ x1 x2 … xn⋅ ⋅ ⋅

(a) AND gates

(b) OR gates

x x

(c) NOT gate

Figure 2.8 The basic gates.

2.4.1 Analysis of a Logic Network

A designer of digital systems is faced with two basic issues. For an existing logic network, it
must be possible to determine the function performed by the network. This task is referred
to as the analysis process. The reverse task of designing a new network that implements a
desired functional behavior is referred to as the synthesis process. The analysis process is
rather straightforward and much simpler than the synthesis process.

Figure 2.10a shows a simple network consisting of three gates. To determine its
functional behavior, we can consider what happens if we apply all possible input signals to
it. Suppose that we start by making x1 = x2 = 0. This forces the output of the NOT gate

x1
x2
x3

f x1 x2+( ) x3⋅=

Figure 2.9 The function from Figure 2.4.
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(a) AND gates

(b) OR gates

x x

(c) NOT gate

· ·

Figure 2.8 The basic gates.

x

x
1

2

x3
f x1 x2+( ) x3⋅=

Figure 2.9 The function from Figure 2.4.

augmented to accommodate a greater number of inputs. We show how logic gates are built
using transistors in Appendix B.

A larger circuit is implemented by a network of gates. For example, the logic function
from Figure 2.4 can be implemented by the network in Figure 2.9. The complexity of a
given network has a direct impact on its cost. Because it is always desirable to reduce
the cost of any manufactured product, it is important to find ways for implementing logic
circuits as inexpensively as possible. We will see shortly that a given logic function can

13
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(a) Network that  implements f x1 x1 x2⋅+=
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0
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0
0
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1
1
0
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(b) Truth table for f
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1
0

1
0

1
0

1
0
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0

x1

x2

A

B

f
Time

(c) Timing diagram

1 1 0 0→ → →0 0 1 1→ → →

1 1 0 1→ → →
0 1 0 1→ → → g

x1

x2

(d) Network that implements g x1 x2+=

Figure 2.10 An example of logic networks.

to be equal to 1 and the output of the AND gate to be 0. Because one of the inputs to the
OR gate is 1, the output of this gate will be 1. Therefore, f = 1 if x1 = x2 = 0. If we let
x1 = 0 and x2 = 1, then no change in the value of f will take place, because the outputs of
the NOT and AND gates will still be 1 and 0, respectively. Next, if we apply x1 = 1 and
x2 = 0, then the output of the NOT gate changes to 0 while the output of the AND gate
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OR gate is 1, the output of this gate will be 1. Therefore, f = 1 if x1 = x2 = 0. If we let
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to be equal to 1 and the output of the AND gate to be 0. Because one of the inputs to the
OR gate is 1, the output of this gate will be 1. Therefore, f = 1 if x1 = x2 = 0. If we let
x1 = 0 and x2 = 1, then no change in the value of f will take place, because the outputs of
the NOT and AND gates will still be 1 and 0, respectively. Next, if we apply x1 = 1 and
x2 = 0, then the output of the NOT gate changes to 0 while the output of the AND gate
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Funções lógicas equivalentes

• Em geral, uma função lógica pode ser implementada com uma variedade de
circuitos com diferentes custos;

• As funções lógicas vistas anteriormente são funcionalmente equivalentes;

• É possível notar a equivalência a partir da análise dos circuitos e contrução das
tabelas verdade;

• 0 mesmo resultado pode ser alcançado através da manipulação algébrica de
expressões lógicas, que fornece a base para técnicas modernas de projeto.
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Figure 2.11 An example of a logic circuit.

it follows the truth table in Figure 2.11b. This logic function, which differs from the OR
function only when both inputs are equal to 1, is useful for other applications as well. It is
called the exclusive-OR (XOR) function and is indicated in logic expressions by the symbol
⊕. Thus, rather than writing L = x · y + x · y, we can write L = x ⊕ y. The XOR function
has the logic-gate symbol illustrated in Figure 2.11d.

Example 2.2 In Chapter 1 we showed how numbers are represented in computers by using binary digits.
As another example of logic functions, consider the addition of two one-digit binary numbers
a and b. The four possible valuations of a, b and the resulting sums are given in Figure 2.12a
(in this figure the + operator signifies addition). The sum S = s1s0 has to be a two-digit
binary number, because when a = b = 1 then S = 10.

Figure 2.12b gives a truth table for the logic functions s1 and s0. From this table we
can see that s1 = a · b and s0 = a ⊕ b. The corresponding logic network is given in part
(c) of the figure. This type of logic circuit, which adds binary numbers, is referred to as an
adder circuit. We discuss circuits of this type in Chapter 3.

L = f (x , y) = x ⊕ y

17
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Figure 2.12 Addition of binary numbers.

2.5 Boolean Algebra

In 1849 George Boole published a scheme for the algebraic description of processes involved
in logical thought and reasoning [1]. Subsequently, this scheme and its further refinements
became known as Boolean algebra. It was almost 100 years later that this algebra found
application in the engineering sense. In the late 1930s Claude Shannon showed that Boolean
algebra provides an effective means of describing circuits built with switches [2]. The
algebra can, therefore, be used to describe logic circuits. We will show that this algebra
is a powerful tool that can be used for designing and analyzing logic circuits. The reader
will come to appreciate that it provides the foundation for much of our modern digital
technology.

Axioms of Boolean Algebra
Like any algebra, Boolean algebra is based on a set of rules that are derived from a

small number of basic assumptions. These assumptions are called axioms. Let us assume
that Boolean algebra involves elements that take on one of two values, 0 and 1. Assume
that the following axioms are true:

1a. 0 · 0 = 0
1b. 1 + 1 = 1
2a. 1 · 1 = 1

S0 = f (a, b) = a⊕ b

S1 = f (a, b) = a.b
18



Bibliografia



Bibliografia

• Brown, S. & Vranesic, Z. - Fundamentals of Digital Logic with Verilog Design, 3rd
Ed., Mc Graw Hill, 2009

• http://ecalculo.if.usp.br/ferramentas/logica/logica.htm

19

https://www.google.com.br/search?q=filetype%3Apdf+Fundamentals+of+Digital+Logic+with+Verilog+Design+&oq=filetype%3Apdf
https://www.google.com.br/search?q=filetype%3Apdf+Fundamentals+of+Digital+Logic+with+Verilog+Design+&oq=filetype%3Apdf
http://ecalculo.if.usp.br/ferramentas/logica/logica.htm


Lógica Digital (1001351)

Funções e Circuitos Lógicos

Prof. Ricardo Menotti
menotti@ufscar.br

Prof. Luciano de Oliveira Neris
lneris@ufscar.br

Atualizado em: 19 de março de 2024

Departamento de Computação
Centro de Ciências Exatas e de Tecnologia
Universidade Federal de São Carlos

20

mailto:menotti@ufscar.br
mailto:lneris@ufscar.br

	Variáveis e Funções
	Portas Lógicas e Circuitos Lógicos
	Bibliografia

