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Figure 2.19 A function to be synthesized.

produce a 0 or 1. The function of the circuit is to continuously monitor the state of the
switches and to produce an output logic value 1 whenever the switches (x1, x2) are in states
(0, 0), (0, 1), or (1, 1). If the state of the switches is (1, 0), the output should be 0. We can
express the required behavior using a truth table, as shown in Figure 2.19.

A possible procedure for designing a logic circuit that implements this truth table is to
create a product term that has a value of 1 for each valuation for which the output function
f has to be 1. Then we can take a logical sum of these product terms to realize f . Let us
begin with the fourth row of the truth table, which corresponds to x1 = x2 = 1. The product
term that is equal to 1 for this valuation is x1 · x2, which is just the AND of x1 and x2. Next
consider the first row of the table, for which x1 = x2 = 0. For this valuation the value 1 is
produced by the product term x1 · x2. Similarly, the second row leads to the term x1 · x2.
Thus f may be realized as

f (x1, x2) = x1x2 + x1x2 + x1x2

The logic network that corresponds to this expression is shown in Figure 2.20a.
Although this network implements f correctly, it is not the simplest such network. To

find a simpler network, we can manipulate the obtained expression using the theorems and
properties from Section 2.5. According to theorem 7b, we can replicate any term in a logical
sum expression. Replicating the third product term, the above expression becomes

f (x1, x2) = x1x2 + x1x2 + x1x2 + x1x2

Using the commutative property 10b to interchange the second and third product terms
gives

f (x1, x2) = x1x2 + x1x2 + x1x2 + x1x2

Now the distributive property 12a allows us to write

f (x1, x2) = (x1 + x1)x2 + x1(x2 + x2)

f (x1, x2) = x1x2 + x1x2 + x1x2

f (x1, x2) = x1x2 + x1x2 + x1x2 + x1x2

f (x1, x2) = x1x2 + x1x2 + x1x2 + x1x2

f (x1, x2) = (x1 + x1)x2 + x1(x2 + x2)

f (x1, x2) = 1.x2 + x1.1 f (x1, x2) = x2 + x1
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(a) Canonical sum-of-products
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(b) Minimal-cost realization
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Figure 2.20 Two implementations of the function in Figure 2.19.

Applying theorem 8b we get

f (x1, x2) = 1 · x2 + x1 · 1

Finally, theorem 6a leads to

f (x1, x2) = x2 + x1

The network described by this expression is given in Figure 2.20b. Obviously, the cost of
this network is much less than the cost of the network in part (a) of the figure.

This simple example illustrates two things. First, a straightforward implementation of
a function can be obtained by using a product term (AND gate) for each row of the truth
table for which the function is equal to 1. Each product term contains all input variables, and
it is formed such that if the input variable xi is equal to 1 in the given row, then xi is entered
in the term; if xi = 0 in that row, then xi is entered. The sum of these product terms realizes
the desired function. Second, there are many different networks that can realize a given
function. Some of these networks may be simpler than others. Algebraic manipulation can
be used to derive simplified logic expressions and thus lower-cost networks.

The process whereby we begin with a description of the desired functional behavior
and then generate a circuit that realizes this behavior is called synthesis. Thus we can
say that we “synthesized” the networks in Figure 2.20 from the truth table in Figure 2.19.
Generation of AND-OR expressions from a truth table is just one of many types of synthesis
techniques that we will encounter in this book.
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Example 2.7 Figure 2.21a depicts a part of a factory that makes bubble gumballs. The gumballs travel
on a conveyor that has three associated sensors s1, s2, and s3. The sensor s1 is connected
to a scale that weighs each gumball, and if a gumball is not heavy enough to be acceptable
then the sensor sets s1 = 1. Sensors s2 and s3 examine the diameter of each gumball. If
a gumball is too small to be acceptable, then s2 = 1, and if it is too large, then s3 = 1.
If a gumball is of an acceptable weight and size, then the sensors give s1 = s2 = s3 = 0.
The conveyor pushes the gumballs over a “trap door” that it used to reject the ones that
are not properly formed. A gumball should be rejected if it is too large, or both too small
and too light. The trap door is opened by setting the logic function f to the value 1. By
inspection, we can see that an appropriate logic expression is f = s1s2 + s3. We will use
Boolean algebra to derive this logic expression from the truth table.

The truth table for f is given in Figure 2.21b. It sets f to 1 for each row in the table
where s3 has the value 1 (too large), as well as for each row where s1 = s2 = 1 (too light and
too small). As described previously, a logic expression for f can be formed by including a
product term for each row where f = 1. Thus, we can write

f = s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3

(a) Conveyor and sensors

0
1
0
1
0
1
1
1

f

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

s1 s2 s3

(b) Truth table

s1

s2 s3

f “reject”=

gumball

Figure 2.21 A bubble gumball factory.f (s1, s2, s3) = s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3

s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3
s1s3(s2 + s2) + s1s3(s2 + s2) + s1s2(s3 + s3)
s1s3 + s1s3 + s1s2
s3 + s1s2

ou

s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3
s3(s1s2 + s1s2 + s1s2 + s1s2) + s1s2(s3 + s3)
s3.1 + s1s2
s3 + s1s2

ou

s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3
s1s3(s2 + s2) + s2s3(s1 + s1) + s1s2(s3 + s3)
s1s3 + s2s3 + s1s2
s3(s1 + s2) + s1s2
s3(s1s2) + s1s2
s3 + s1s2

4
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As illustrated by Examples 2.7 to 2.9, there are multiple ways in which a logic expres-
sion can be minimized by using Boolean algebra. This process can be daunting, because it
is not obvious which rules, identities, and properties should be applied, and in what order.
Later in this chapter, in Section 2.11, we will introduce a graphical technique, called the
Karnaugh map, that clarifies this process by providing a systematic way of generating a
minimal-cost logic expression for a function.

2.6.1 Sum-of-Products and Product-of-Sums Forms

Having introduced the synthesis process by means of simple examples, we will now present
it in more formal terms using the terminology that is encountered in the technical literature.
We will also show how the principle of duality, which was introduced in Section 2.5, applies
broadly in the synthesis process.

If a function f is specified in the form of a truth table, then an expression that realizes
f can be obtained by considering either the rows in the table for which f = 1, as we have
already done, or by considering the rows for which f = 0, as we will explain shortly.

Minterms
For a function of n variables, a product term in which each of the n variables appears

once is called a minterm. The variables may appear in a minterm either in uncomplemented
or complemented form. For a given row of the truth table, the minterm is formed by
including xi if xi = 1 and by including xi if xi = 0.

To illustrate this concept, consider the truth table in Figure 2.22. We have numbered the
rows of the table from 0 to 7, so that we can refer to them easily. From the discussion of the
binary number representation in Section 1.5, we can observe that the row numbers chosen
are just the numbers represented by the bit patterns of variables x1, x2, and x3. The figure
shows all minterms for the three-variable table. For example, in the first row the variables

Row
number x1 x2 x3 Minterm Maxterm

0 0 0 0 m0 = x1x2x3 M0 = x1 + x2 + x3
1 0 0 1 m1 = x1x2x3 M1 = x1 + x2 + x3
2 0 1 0 m2 = x1x2x3 M2 = x1 + x2 + x3
3 0 1 1 m3 = x1x2x3 M3 = x1 + x2 + x3
4 1 0 0 m4 = x1x2x3 M4 = x1 + x2 + x3
5 1 0 1 m5 = x1x2x3 M5 = x1 + x2 + x3
6 1 1 0 m6 = x1x2x3 M6 = x1 + x2 + x3
7 1 1 1 m7 = x1x2x3 M7 = x1 + x2 + x3

Figure 2.22 Three-variable minterms and maxterms.
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have the values x1 = x2 = x3 = 0, which leads to the minterm x1x2x3. In the second row
x1 = x2 = 0 and x3 = 1, which gives the minterm x1x2x3, and so on. To be able to refer to
the individual minterms easily, it is convenient to identify each minterm by an index that
corresponds to the row numbers shown in the figure. We will use the notation mi to denote
the minterm for row number i. Thus m0 = x1x2x3, m1 = x1x2x3, and so on.

Sum-of-Products Form
A function f can be represented by an expression that is a sum of minterms, where each

minterm isANDed with the value of f for the corresponding valuation of input variables. For
example, the two-variable minterms are m0 = x1x2, m1 = x1x2, m2 = x1x2, and m3 = x1x2.
The function in Figure 2.19 can be represented as

f = m0 · 1 + m1 · 1 + m2 · 0 + m3 · 1

= m0 + m1 + m3

= x1x2 + x1x2 + x1x2

which is the form that we derived in the previous section using an intuitive approach. Only
the minterms that correspond to the rows for which f = 1 appear in the resulting expression.

Any function f can be represented by a sum of minterms that correspond to the rows
in the truth table for which f = 1. The resulting implementation is functionally correct and
unique, but it is not necessarily the lowest-cost implementation of f . A logic expression
consisting of product (AND) terms that are summed (ORed) is said to be in the sum-of-
products (SOP) form. If each product term is a minterm, then the expression is called a
canonical sum-of-products for the function f . As we have seen in the example of Figure 2.20,
the first step in the synthesis process is to derive a canonical sum-of-products expression
for the given function. Then we can manipulate this expression, using the theorems and
properties of Section 2.5, with the goal of finding a functionally equivalent sum-of-products
expression that has a lower cost.

As another example, consider the three-variable function f (x1, x2, x3), specified by the
truth table in Figure 2.23. To synthesize this function, we have to include the minterms m1,

Row
number x1 x2 x3 f x1 x2 x3

0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

(    ,     , )

Figure 2.23 A three-variable function.

Soma dos produtos: Produto das somas:
f (x1, x2, x3) = Σ(m1,m4,m5,m6) f (x1, x2, x3) = Π(M0,M2,M3,M7)

f (x1, x2, x3) = Σm(1, 4, 5, 6) f (x1, x2, x3) = ΠM(0, 2, 3, 7) 6
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Figure 2.23 A three-variable function.

f = m0 +m2 +m3 +m7

f = m0 +m2 +m3 +m7

f = m0m2m3m7

f = M0.M2.M3.M7 7
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m4, m5, and m6. Copying these minterms from Figure 2.22 leads to the following canonical
sum-of-products expression for f

f (x1, x2, x3) = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

This expression can be manipulated as follows

f = (x1 + x1)x2x3 + x1(x2 + x2)x3

= 1 · x2x3 + x1 · 1 · x3

= x2x3 + x1x3

This is the minimum-cost sum-of-products expression for f . It describes the circuit shown
in Figure 2.24a. A good indication of the cost of a logic circuit is the total number of gates
plus the total number of inputs to all gates in the circuit. Using this measure, the cost of
the network in Figure 2.24a is 13, because there are five gates and eight inputs to the gates.
By comparison, the network implemented on the basis of the canonical sum-of-products
would have a cost of 27; from the preceding expression, the OR gate has four inputs, each
of the four AND gates has three inputs, and each of the three NOT gates has one input.

Minterms, with their row-number subscripts, can also be used to specify a given func-
tion in a more concise form. For example, the function in Figure 2.23 can be specified

f

(a) A minimal sum-of-products realization

f

x1

x2

x3

x2

x1

x3

(b) A minimal product-of-sums realization

Figure 2.24 Two realizations of the function in Figure 2.23.
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Figure 2.25 NAND and NOR gates.
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Figure 2.26 DeMorgan’s theorem in terms of logic gates.
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Figure 2.27 Using NAND gates to implement a sum-of-products.
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Figure 2.28 Using NOR gates to implement a product-of-sums.
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Figure 2.28 Using NOR gates to implement a product-of-sums.
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(a) POS implementation

(b) NOR implementation
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Figure 2.29 NOR-gate realization of the function in Example 2.13.

x1

x2

x3

x2

x3

f

x1
f

(a) SOP implementation

(b) NAND implementation

Figure 2.30 NAND-gate realization of the function in Example 2.10.
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Figure 2.29 NOR-gate realization of the function in Example 2.13.
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(a) SOP implementation

(b) NAND implementation

Figure 2.30 NAND-gate realization of the function in Example 2.10.
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