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Row
number x1 x2 x3 f

0 0 0 0 1
1 0 0 1 0
2 0 1 0 1
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Figure 2.48 The function f (x1, x2, x3) = ∑
m(0, 2, 4, 5, 6).

were introduced in Section 2.5. For example, we often used the distributive property,
DeMorgan’s theorem, and the combining property. In general, it is not obvious when
to apply these theorems and properties to find a minimum-cost circuit, and it is often
tedious and impractical to do so. This section introduces a more manageable approach, call
the Karnaug h map, which provides a systematic way of producing a minimum-cost logic
expression.

The key to the Karnaugh map approach is that it allows the application of the combining
property 14a, or 14b, as judiciously as possible. To understand how it works consider the
function f in Figure 2.48. The canonical sum-of-products expression for f consists of
minterms m0, m2, m4, m5, and m6, so that

f = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

The combining property 14a allows us to replace two minterms that differ in the value of
only one variable with a single product term that does not include that variable at all. For
example, both m0 and m2 include x1 and x3, but they differ in the value of x2 because m0

includes x2 while m2 includes x2. Thus

x1x2x3 + x1x2x3 = x1(x2 + x2)x3

= x1 · 1 · x3

= x1x3

Hence m0 and m2 can be replaced by the single product term x1x3. Similarly, m4 and m6

differ only in the value of x2 and can be combined using

x1x2x3 + x1x2x3 = x1(x2 + x2)x3

= x1 · 1 · x3

= x1x3

= x3 +x1x2
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Now the two newly-generated terms, x1x3 and x1x3, can be combined further as

x1x3 + x1x3 = (x1 + x1)x3

= 1 · x3

= x3

These optimization steps indicate that we can replace the four minterms m0, m2, m4, and
m6 with the single product term x3. In other words, the minterms m0, m2, m4, and m6 are
all included in the term x3. The remaining minterm in f is m5. It can be combined with m4,
which gives

x1x2x3 + x1x2x3 = x1x2

Recall that theorem 7b in Section 2.5 indicates that

m4 = m4 + m4

which means that we can use the minterm m4 twice—to combine with minterms m0, m2,
and m6 to yield the term x3 as explained above and also to combine with m5 to yield the
term x1x2.

We have now accounted for all the minterms in f ; hence all five input valuations for
which f = 1 are covered by the minimum-cost expression

f = x3 + x1x2

The expression has the product term x3 because f = 1 when x3 = 0 regardless of the values
of x1 and x2. The four minterms m0, m2, m4, and m6 represent all possible minterms for
which x3 = 0; they include all four valuations, 00, 01, 10, and 11, of variables x1 and x2.
Thus if x3 = 0, then it is guaranteed that f = 1. This may not be easy to see directly from
the truth table in Figure 2.48, but it is obvious if we write the corresponding valuations
grouped together:

x1 x2 x3

m0 0 0 0

m2 0 1 0

m4 1 0 0

m6 1 1 0

In a similar way, if we look at m4 and m5 as a group of two

x1 x2 x3

m4 1 0 0

m5 1 0 1

it is clear that when x1 = 1 and x2 = 0, then f = 1 regardless of the value of x3.
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which x3 = 0; they include all four valuations, 00, 01, 10, and 11, of variables x1 and x2.
Thus if x3 = 0, then it is guaranteed that f = 1. This may not be easy to see directly from
the truth table in Figure 2.48, but it is obvious if we write the corresponding valuations
grouped together:

x1 x2 x3

m0 0 0 0

m2 0 1 0

m4 1 0 0

m6 1 1 0

In a similar way, if we look at m4 and m5 as a group of two

x1 x2 x3

m4 1 0 0

m5 1 0 1

it is clear that when x1 = 1 and x2 = 0, then f = 1 regardless of the value of x3.
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Now the two newly-generated terms, x1x3 and x1x3, can be combined further as

x1x3 + x1x3 = (x1 + x1)x3

= 1 · x3

= x3

These optimization steps indicate that we can replace the four minterms m0, m2, m4, and
m6 with the single product term x3. In other words, the minterms m0, m2, m4, and m6 are
all included in the term x3. The remaining minterm in f is m5. It can be combined with m4,
which gives

x1x2x3 + x1x2x3 = x1x2

Recall that theorem 7b in Section 2.5 indicates that

m4 = m4 + m4

which means that we can use the minterm m4 twice—to combine with minterms m0, m2,
and m6 to yield the term x3 as explained above and also to combine with m5 to yield the
term x1x2.

We have now accounted for all the minterms in f ; hence all five input valuations for
which f = 1 are covered by the minimum-cost expression

f = x3 + x1x2

The expression has the product term x3 because f = 1 when x3 = 0 regardless of the values
of x1 and x2. The four minterms m0, m2, m4, and m6 represent all possible minterms for
which x3 = 0; they include all four valuations, 00, 01, 10, and 11, of variables x1 and x2.
Thus if x3 = 0, then it is guaranteed that f = 1. This may not be easy to see directly from
the truth table in Figure 2.48, but it is obvious if we write the corresponding valuations
grouped together:

x1 x2 x3

m0 0 0 0

m2 0 1 0

m4 1 0 0

m6 1 1 0

In a similar way, if we look at m4 and m5 as a group of two

x1 x2 x3

m4 1 0 0

m5 1 0 1

it is clear that when x1 = 1 and x2 = 0, then f = 1 regardless of the value of x3.
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Figure 2.49 Location of two-variable minterms.

The preceding discussion suggests that it would be advantageous to devise a method
that allows easy discovery of groups of minterms for which f = 1 that can be combined
into single terms. The Karnaugh map is a useful vehicle for this purpose.

The Karnaug h map [1] is an alternative to the truth-table form for representing a
function. The map consists of cells that correspond to the rows of the truth table. Consider
the two-variable example in Figure 2.49. Part (a) depicts the truth-table form, where each
of the four rows is identified by a minterm. Part (b) shows the Karnaugh map, which has
four cells. The columns of the map are labeled by the value of x1, and the rows are labeled
by x2. This labeling leads to the locations of minterms as shown in the figure. Compared
to the truth table, the advantage of the Karnaugh map is that it allows easy recognition of
minterms that can be combined using property 14a from Section 2.5. Minterms in any two
cells that are adjacent, either in the same row or the same column, can be combined. For
example, the minterms m2 and m3 can be combined as

m2 + m3 = x1x2 + x1x2

= x1(x2 + x2)

= x1 · 1

= x1

The Karnaugh map is not just useful for combining pairs of minterms. As we will see in
several larger examples, the Karnaugh map can be used directly to derive a minimum-cost
circuit for a logic function.

Two-Variable Map
A Karnaugh map for a two-variable function is given in Figure 2.50. It corresponds to

the function f of Figure 2.19. The value of f for each valuation of the variables x1 and x2

is indicated in the corresponding cell of the map. Because a 1 appears in both cells of the
bottom row and these cells are adjacent, there exists a single product term that can cause
f to be equal to 1 when the input variables have the values that correspond to either of
these cells. To indicate this fact, we have circled the cell entries in the map. Rather than
using the combining property formally, we can derive the product term intuitively. Both of
the cells are identified by x2 = 1, but x1 = 0 for the left cell and x1 = 1 for the right cell.
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Figure 2.49 Location of two-variable minterms.

The preceding discussion suggests that it would be advantageous to devise a method
that allows easy discovery of groups of minterms for which f = 1 that can be combined
into single terms. The Karnaugh map is a useful vehicle for this purpose.

The Karnaug h map [1] is an alternative to the truth-table form for representing a
function. The map consists of cells that correspond to the rows of the truth table. Consider
the two-variable example in Figure 2.49. Part (a) depicts the truth-table form, where each
of the four rows is identified by a minterm. Part (b) shows the Karnaugh map, which has
four cells. The columns of the map are labeled by the value of x1, and the rows are labeled
by x2. This labeling leads to the locations of minterms as shown in the figure. Compared
to the truth table, the advantage of the Karnaugh map is that it allows easy recognition of
minterms that can be combined using property 14a from Section 2.5. Minterms in any two
cells that are adjacent, either in the same row or the same column, can be combined. For
example, the minterms m2 and m3 can be combined as

m2 + m3 = x1x2 + x1x2

= x1(x2 + x2)

= x1 · 1

= x1

The Karnaugh map is not just useful for combining pairs of minterms. As we will see in
several larger examples, the Karnaugh map can be used directly to derive a minimum-cost
circuit for a logic function.

Two-Variable Map
A Karnaugh map for a two-variable function is given in Figure 2.50. It corresponds to

the function f of Figure 2.19. The value of f for each valuation of the variables x1 and x2

is indicated in the corresponding cell of the map. Because a 1 appears in both cells of the
bottom row and these cells are adjacent, there exists a single product term that can cause
f to be equal to 1 when the input variables have the values that correspond to either of
these cells. To indicate this fact, we have circled the cell entries in the map. Rather than
using the combining property formally, we can derive the product term intuitively. Both of
the cells are identified by x2 = 1, but x1 = 0 for the left cell and x1 = 1 for the right cell.
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x1
x2

1 0

1 1
f x2 x1+=

0

1

0 1

Figure 2.50 The function of Figure 2.19.

Thus if x2 = 1, then f = 1 regardless of whether x1 is equal to 0 or 1. The product term
representing the two cells is simply x2.

Similarly, f = 1 for both cells in the first column. These cells are identified by x1 = 0.
Therefore, they lead to the product term x1. Since this takes care of all instances where
f = 1, it follows that the minimum-cost realization of the function is

f = x2 + x1

Evidently, to find a minimum-cost implementation of a given function, it is necessary
to find the smallest number of product terms that produce a value of 1 for all cases where
f = 1. Moreover, the cost of these product terms should be as low as possible. Note that a
product term that covers two adjacent cells is cheaper to implement than a term that covers
only a single cell. For our example once the two cells in the bottom row have been covered
by the product term x2, only one cell (top left) remains. Although it could be covered by
the term x1x2, it is better to combine the two cells in the left column to produce the product
term x1 because this term is cheaper to implement.

Three-Variable Map
A three-variable Karnaugh map is constructed by placing 2 two-variable maps side

by side. Figure 2.51a lists all of the three-variable minterms, and part (b) of the figure
indicates the locations of these minterms in the Karnaugh map. In this case each valuation
of x1 and x2 identifies a column in the map, while the value of x3 distinguishes the two
rows. To ensure that minterms in the adjacent cells in the map can always be combined
into a single product term, the adjacent cells must differ in the value of only one variable.
Thus the columns are identified by the sequence of (x1, x2) values of 00, 01, 11, and 10,
rather than the more obvious 00, 01, 10, and 11. This makes the second and third columns
different only in variable x1. Also, the first and the fourth columns differ only in variable
x1, which means that these columns can be considered as being adjacent. The reader may
find it useful to visualize the map as a rectangle folded into a cylinder where the left and the
right edges in Figure 2.51b are made to touch. (A sequence of codes, or valuations, where
consecutive codes differ in one variable only is known as the Gray code. This code is used
for a variety of purposes, some of which will be encountered later in the book.)

Figure 2.52a represents the function of Figure 2.23 in Karnaugh-map form. To synthe-
size this function, it is necessary to cover the four 1s in the map as efficiently as possible.
It is not difficult to see that two product terms suffice. The first covers the 1s in the top row,
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Figure 2.51 Location of three-variable minterms.

f x1x3 x2x3+=
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1 1

0 1
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(a) The function of Figure 2.23

f x3 x1 x2+=

(b) The function of Figure 2.48
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0

1

00 01 11 10

0

1

Figure 2.52 Examples of three-variable Karnaugh maps.

which are represented by the term x1x3. The second term is x2x3, which covers the 1s in
the bottom row. Hence the function is implemented as

f = x1x3 + x2x3

which describes the circuit obtained in Figure 2.24a.
In a three-variable map it is possible to combine cells to produce product terms that

correspond to a single cell, two adjacent cells, or a group of four adjacent cells. Realization
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Figure 2.52 Examples of three-variable Karnaugh maps.

which are represented by the term x1x3. The second term is x2x3, which covers the 1s in
the bottom row. Hence the function is implemented as

f = x1x3 + x2x3

which describes the circuit obtained in Figure 2.24a.
In a three-variable map it is possible to combine cells to produce product terms that

correspond to a single cell, two adjacent cells, or a group of four adjacent cells. Realization
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of a group of four adjacent cells using a single product term is illustrated in Figure 2.52b,
using the function from Figure 2.48. The four cells in the top row correspond to the
(x1, x2, x3) valuations 000, 010, 110, and 100. As we discussed before, this indicates that if
x3 = 0, then f = 1 for all four possible valuations of x1 and x2, which means that the only
requirement is that x3 = 0. Therefore, the product term x3 represents these four cells. The
remaining 1, corresponding to minterm m5, is best covered by the term x1x2, obtained by
combining the two cells in the right-most column. The complete realization of f is

f = x3 + x1x2

It is also possible to have a group of eight 1s in a three-variable map. This is the trivial case
of a function where f = 1 for all valuations of input variables; in other words, f is equal to
the constant 1.

The Karnaugh map provides a simple mechanism for generating the product terms that
should be used to implement a given function. A product term must include only those
variables that have the same value for all cells in the group represented by this term. If the
variable is equal to 1 in the group, it appears uncomplemented in the product term; if it is
equal to 0, it appears complemented. Each variable that is sometimes 1 and sometimes 0
in the group does not appear in the product term.

Four-Variable Map
A four-variable map is constructed by placing 2 three-variable maps together to create

four rows in the same fashion as we used 2 two-variable maps to form the four columns
in a three-variable map. Figure 2.53 shows the structure of the four-variable map and
the location of minterms. We have included in this figure another frequently used way of
designating the rows and columns. As shown in blue, it is sufficient to indicate the rows
and columns for which a given variable is equal to 1. Thus x1 = 1 for the two right-most
columns, x2 = 1 for the two middle columns, x3 = 1 for the bottom two rows, and x4 = 1
for the two middle rows.

Figure 2.54 gives four examples of four-variable functions. The function f1 has a group
of four 1s in adjacent cells in the bottom two rows, for which x2 = 0 and x3 = 1—they are

x1 x2
x3 x4 00 01 11 10

00

01

11

10

x2

x4

x1

x3

m0

m1 m5

m4 m12

m13

m8

m9

m3

m2 m6

m7 m15

m14

m11

m10

Figure 2.53 A four-variable Karnaugh map.
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Figure 2.54 Examples of four-variable Karnaugh maps.

represented by the product term x2x3. This leaves the two 1s in the second row to be covered,
which can be accomplished with the term x1x3x4. Hence the minimum-cost implementation
of the function is

f1 = x2x3 + x1x3x4

The function f2 includes a group of eight 1s that can be implemented by a single term, x3.
Again, the reader should note that if the remaining two 1s were implemented as a group
of two, the result would be the product term x1x3x4. Implementing these 1s as a part of a
group of four 1s, as shown in the figure, gives the less expensive product term x1x4.

Just as the left and the right edges of the map are adjacent in terms of the assignment
of the variables, so are the top and the bottom edges. Indeed, the four corners of the map
are adjacent to each other and thus can form a group of four 1s, which may be implemented
by the product term x2x4. This case is depicted by the function f3. In addition to this group
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of 1s, there are four other 1s that must be covered to implement f3. This can be done as
shown in the figure.

In all examples that we have considered so far, a unique solution exists that leads to
a minimum-cost circuit. The function f4 provides an example where there is some choice.
The groups of four 1s in the top-left and bottom-right corners of the map are realized by the
terms x1x3 and x1x3, respectively. This leaves the two 1s that correspond to the term x1x2x3.
But these two 1s can be realized more economically by treating them as a part of a group
of four 1s. They can be included in two different groups of four, as shown in the figure.
One choice leads to the product term x1x2, and the other leads to x2x3. Both of these terms
have the same cost; hence it does not matter which one is chosen in the final circuit. Note
that the complement of x3 in the term x2x3 does not imply an increased cost in comparison
with x1x2, because this complement must be generated anyway to produce the term x1x3,
which is included in the implementation.

Five-Variable Map
We can use 2 four-variable maps to construct a five-variable map. It is easy to imagine

a structure where one map is directly behind the other, and they are distinguished by x5 = 0
for one map and x5 = 1 for the other map. Since such a structure is awkward to draw, we
can simply place the two maps side by side as shown in Figure 2.55. For the logic function
given in this example, two groups of four 1s appear in the same place in both four-variable
maps; hence their realization does not depend on the value of x5. The same is true for the
two groups of two 1s in the second row. The 1 in the top-right corner appears only in the
right map, where x5 = 1; it is a part of the group of two 1s realized by the term x1x2x3x5.
Note that in this map we left blank those cells for which f = 0, to make the figure more
readable. We will do likewise in a number of maps that follow.

Using a five-variable map is obviously more awkward than using maps with fewer
variables. Extending the Karnaugh map concept to more variables is not useful from

x1 x2
x3 x4 00 01 11 10

1 1

1 1

1 1

00

01

11

10

x1 x2
x3 x4 00 01 11 10

1

1 1

1 1

1 1

00

01

11

10

f1 x1 x3 x1 x3 x4 x1 x2 x3 x5+ +=

x5 1=x5 0=

Figure 2.55 A five-variable Karnaugh map.
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