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Figure 2.59 The function f (x1, . . . , x4) =∑
m(0, 2, 4, 5, 10, 11, 13, 15).
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Figure 2.60 POS minimization of f (x1, x2, x3) = !M (4, 5, 6).

f = 0 that have to be combined into sum terms that are as large as possible. Again, a sum
term is considered larger if it covers more maxterms, and the larger the term, the less costly
it is to implement.

Figure 2.60 depicts the same function as Figure 2.56 depicts. There are three maxterms
that must be covered: M4, M5, and M6. They can be covered by two sum terms shown in
the figure, leading to the following implementation:

f = (x1 + x2)(x1 + x3)

A circuit corresponding to this expression has two OR gates and one AND gate, with two
inputs for each gate. Its cost is greater than the cost of the equivalent SOP implementation
derived in Figure 2.56, which requires only one OR gate and one AND gate.

The function from Figure 2.57 is reproduced in Figure 2.61. The maxterms for which
f = 0 can be covered as shown, leading to the expression

f = (x2 + x3)(x3 + x4)(x1 + x2 + x3 + x4)

f = (x1 + x2)(x1 + x3)

f = x1x2 + x1x3

f = f = x1x2 + x1x3

f = x1x2.x1x3

f = (x1 + x2)(x1 + x3)

f = x1 + x2x3
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Figure 2.61 POS minimization of f (x1, . . . , x4) =
!M (0, 1, 4, 8, 9, 12, 15).

This expression represents a circuit with three OR gates and one AND gate. Two of the
OR gates have two inputs, and the third has four inputs; the AND gate has three inputs.
Assuming that both the complemented and uncomplemented versions of the input variables
x1 to x4 are available at no extra cost, the cost of this circuit is 15. This compares favorably
with the SOP implementation derived from Figure 2.57, which requires five gates and 13
inputs at a total cost of 18.

In general, as we already know from Section 2.6.1, the SOP and POS implementations
of a given function may or may not entail the same cost. The reader is encouraged to find
the POS implementations for the functions in Figures 2.58 and 2.59 and compare the costs
with the SOP forms.

We have shown how to obtain minimum-cost POS implementations by finding the
largest sum terms that cover all maxterms for which f = 0. Another way of obtaining
the same result is by finding a minimum-cost SOP implementation of the complement of
f . Then we can apply DeMorgan’s theorem to this expression to obtain the simplest POS

realization because f = f . For example, the simplest SOP implementation of f in Figure
2.60 is

f = x1x2 + x1x3

Complementing this expression using DeMorgan’s theorem yields

f = f = x1x2 + x1x3

= x1x2 · x1x3

= (x1 + x2)(x1 + x3)

which is the same result as obtained above.
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Especificação incompleta
(don’t care)

• Nos circuitos digitais, há certas situações onde algumas entradas para uma função
nunca acontecem. Ex:

• Um sensor para detectar se uma porta está aberta e outro para detectar se a mesma
porta está fechada;

• Um sensor para detectar se um objeto é muito pesado e outro se ele é muito leve;
etc.

• Em funções deste tipo, as entradas que nunca ocorrem são chamadas de
indiferenças (don’t care conditions);

• Tanto faz qual será a saída da função nesses casos, já que a entrada nunca ocorre;
• Isso pode ser usada para otimizar a função, adotando 0 ou 1 na saída de acordo com

a conveniência.
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Figure 2.62 Two implementations of the function f (x1, . . . , x4) =∑
m(2, 4, 5, 6, 10) + D(12, 13, 14, 15).

Part (b) shows how the best product-of-sums implementation can be obtained. The
same values are assumed for the don’t cares. The result is

f = (x2 + x3)(x3 + x4)

The freedom in choosing the value of don’t-cares leads to greatly simplified realizations. If
we were to naively exclude the don’t-cares from the synthesis of the function, by assuming
that they always have a value of 0, the resulting SOP expression would be

f = x1x2x3 + x1x3x4 + x2x3x4

and the POS expression would be

f = (x2 + x3)(x3 + x4)(x1 + x2)

Both of these expressions have higher costs than the expressions obtained with a more
appropriate assignment of values to don’t-cares.

Although don’t-care values can be assigned arbitrarily, an arbitrary assignment may
not lead to a minimum-cost implementation of a given function. If there are k don’t-cares,
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Part (b) shows how the best product-of-sums implementation can be obtained. The
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f = (x2 + x3)(x3 + x4)

The freedom in choosing the value of don’t-cares leads to greatly simplified realizations. If
we were to naively exclude the don’t-cares from the synthesis of the function, by assuming
that they always have a value of 0, the resulting SOP expression would be

f = x1x2x3 + x1x3x4 + x2x3x4

and the POS expression would be

f = (x2 + x3)(x3 + x4)(x1 + x2)

Both of these expressions have higher costs than the expressions obtained with a more
appropriate assignment of values to don’t-cares.
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not lead to a minimum-cost implementation of a given function. If there are k don’t-cares,
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Circuitos com múltiplas saídas

• Frequentemente é necessário implementar funções que são parte de um sistema
maior;

• Pode ser possível compartilhar algumas das portas necessárias na implementação
de funções individuais;

• Essa estratégia nem sempre funciona da melhor maneira, como veremos a seguir;

• Em vez de derivar as expressões individualmente, podemos procurar implicantes
que possam ser compartilhados com vantagem na realização combinada das
funções.
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Figure 2.63 Using don’t-care minterms when displaying BCD numbers.
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Example 2.16 An example of gate sharing is given in Figure 2.64. Two functions, f1 and f2, of the same
variables are to be implemented. The minimum-cost implementations for these functions
are obtained as shown in parts (a) and (b) of the figure. This results in the expressions

f1 = x1x3 + x1x3 + x2x3x4

f2 = x1x3 + x1x3 + x2x3x4

The cost of f1 is four gates and 10 inputs, for a total of 14. The cost of f2 is the same. Thus
the total cost is 28 if both functions are implemented by separate circuits. A less-expensive
realization is possible if the two circuits are combined into a single circuit with two outputs.
Because the first two product terms are identical in both expressions, the AND gates that
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Figure 2.64 An example of multiple-output synthesis.
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Figure 2.65 Another example of multiple-output synthesis.
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