
Lógica Digital (1001351)

Mapas de Karnaugh

Prof. Ricardo Menotti
menotti@ufscar.br

Prof. Luciano de Oliveira Neris
lneris@ufscar.br

Atualizado em: 21 de março de 2024

Departamento de Computação
Centro de Ciências Exatas e de Tecnologia
Universidade Federal de São Carlos

1

mailto:menotti@ufscar.br
mailto:lneris@ufscar.br

Mapas de Karnaugh

Mapas de Karnaugh: produto das somas

December 31, 2012 09:08 vra80547_ch02 Sheet number 72 Page number 92 magenta black

92 C H A P T E R 2 • Introduction to Logic Circuits

x1 x2
x3 x4 00 01 11 10

1

1

1

1

1

1

00

01

11

10 1

1

x1x3x4

x2x3x4

x2x3x4

x1x3x4

x1x2x4x1x2x4

x1x2x3 x1x2x3

Figure 2.59 The function f (x1, . . . , x4) =∑
m(0, 2, 4, 5, 10, 11, 13, 15).

x1 x2
x3

1

00 01 11 10

0

1

1 0 0

1 1 1 0

x1 x2+()

x1 x3+()

Figure 2.60 POS minimization of f (x1, x2, x3) = !M (4, 5, 6).

f = 0 that have to be combined into sum terms that are as large as possible. Again, a sum
term is considered larger if it covers more maxterms, and the larger the term, the less costly
it is to implement.

Figure 2.60 depicts the same function as Figure 2.56 depicts. There are three maxterms
that must be covered: M4, M5, and M6. They can be covered by two sum terms shown in
the figure, leading to the following implementation:

f = (x1 + x2)(x1 + x3)

A circuit corresponding to this expression has two OR gates and one AND gate, with two
inputs for each gate. Its cost is greater than the cost of the equivalent SOP implementation
derived in Figure 2.56, which requires only one OR gate and one AND gate.

The function from Figure 2.57 is reproduced in Figure 2.61. The maxterms for which
f = 0 can be covered as shown, leading to the expression

f = (x2 + x3)(x3 + x4)(x1 + x2 + x3 + x4)

f = (x1 + x2)(x1 + x3)

f = x1x2 + x1x3

f = f = x1x2 + x1x3

f = x1x2.x1x3

f = (x1 + x2)(x1 + x3)

f = x1 + x2x3

2

Mapas de Karnaugh: produto das somas

December 31, 2012 09:08 vra80547_ch02 Sheet number 72 Page number 92 magenta black

92 C H A P T E R 2 • Introduction to Logic Circuits

x1 x2
x3 x4 00 01 11 10

1

1

1

1

1

1

00

01

11

10 1

1

x1x3x4

x2x3x4

x2x3x4

x1x3x4

x1x2x4x1x2x4

x1x2x3 x1x2x3

Figure 2.59 The function f (x1, . . . , x4) =∑
m(0, 2, 4, 5, 10, 11, 13, 15).

x1 x2
x3

1

00 01 11 10

0

1

1 0 0

1 1 1 0

x1 x2+()

x1 x3+()

Figure 2.60 POS minimization of f (x1, x2, x3) = !M (4, 5, 6).

f = 0 that have to be combined into sum terms that are as large as possible. Again, a sum
term is considered larger if it covers more maxterms, and the larger the term, the less costly
it is to implement.

Figure 2.60 depicts the same function as Figure 2.56 depicts. There are three maxterms
that must be covered: M4, M5, and M6. They can be covered by two sum terms shown in
the figure, leading to the following implementation:

f = (x1 + x2)(x1 + x3)

A circuit corresponding to this expression has two OR gates and one AND gate, with two
inputs for each gate. Its cost is greater than the cost of the equivalent SOP implementation
derived in Figure 2.56, which requires only one OR gate and one AND gate.

The function from Figure 2.57 is reproduced in Figure 2.61. The maxterms for which
f = 0 can be covered as shown, leading to the expression

f = (x2 + x3)(x3 + x4)(x1 + x2 + x3 + x4)

f = (x1 + x2)(x1 + x3)

f = x1x2 + x1x3

f = f = x1x2 + x1x3

f = x1x2.x1x3

f = (x1 + x2)(x1 + x3)

f = x1 + x2x3

2

Mapas de Karnaugh: produto das somas

December 31, 2012 09:08 vra80547_ch02 Sheet number 72 Page number 92 magenta black

92 C H A P T E R 2 • Introduction to Logic Circuits

x1 x2
x3 x4 00 01 11 10

1

1

1

1

1

1

00

01

11

10 1

1

x1x3x4

x2x3x4

x2x3x4

x1x3x4

x1x2x4x1x2x4

x1x2x3 x1x2x3

Figure 2.59 The function f (x1, . . . , x4) =∑
m(0, 2, 4, 5, 10, 11, 13, 15).

x1 x2
x3

1

00 01 11 10

0

1

1 0 0

1 1 1 0

x1 x2+()

x1 x3+()

Figure 2.60 POS minimization of f (x1, x2, x3) = !M (4, 5, 6).

f = 0 that have to be combined into sum terms that are as large as possible. Again, a sum
term is considered larger if it covers more maxterms, and the larger the term, the less costly
it is to implement.

Figure 2.60 depicts the same function as Figure 2.56 depicts. There are three maxterms
that must be covered: M4, M5, and M6. They can be covered by two sum terms shown in
the figure, leading to the following implementation:

f = (x1 + x2)(x1 + x3)

A circuit corresponding to this expression has two OR gates and one AND gate, with two
inputs for each gate. Its cost is greater than the cost of the equivalent SOP implementation
derived in Figure 2.56, which requires only one OR gate and one AND gate.

The function from Figure 2.57 is reproduced in Figure 2.61. The maxterms for which
f = 0 can be covered as shown, leading to the expression

f = (x2 + x3)(x3 + x4)(x1 + x2 + x3 + x4)

f = (x1 + x2)(x1 + x3)

f = x1x2 + x1x3

f = f = x1x2 + x1x3

f = x1x2.x1x3

f = (x1 + x2)(x1 + x3)

f = x1 + x2x3

2

Mapas de Karnaugh: produto das somas

December 31, 2012 09:08 vra80547_ch02 Sheet number 73 Page number 93 magenta black

2.13 Minimization of Product-of-Sums Forms 93

x1 x2
x3 x4

0

00 01 11 10

0 0 0

0 1 1 0

1 1 0 1

1 1 1 1

00

01

11

10

x2 x3+()

x3 x4+()

x1 x2 x3 x4+ + +()

Figure 2.61 POS minimization of f (x1, . . . , x4) =
!M (0, 1, 4, 8, 9, 12, 15).

This expression represents a circuit with three OR gates and one AND gate. Two of the
OR gates have two inputs, and the third has four inputs; the AND gate has three inputs.
Assuming that both the complemented and uncomplemented versions of the input variables
x1 to x4 are available at no extra cost, the cost of this circuit is 15. This compares favorably
with the SOP implementation derived from Figure 2.57, which requires five gates and 13
inputs at a total cost of 18.

In general, as we already know from Section 2.6.1, the SOP and POS implementations
of a given function may or may not entail the same cost. The reader is encouraged to find
the POS implementations for the functions in Figures 2.58 and 2.59 and compare the costs
with the SOP forms.

We have shown how to obtain minimum-cost POS implementations by finding the
largest sum terms that cover all maxterms for which f = 0. Another way of obtaining
the same result is by finding a minimum-cost SOP implementation of the complement of
f . Then we can apply DeMorgan’s theorem to this expression to obtain the simplest POS

realization because f = f . For example, the simplest SOP implementation of f in Figure
2.60 is

f = x1x2 + x1x3

Complementing this expression using DeMorgan’s theorem yields

f = f = x1x2 + x1x3

= x1x2 · x1x3

= (x1 + x2)(x1 + x3)

which is the same result as obtained above.

3

Especificação incompleta
(don’t care)

Especificação incompleta
(don’t care)

• Nos circuitos digitais, há certas situações onde algumas entradas para uma função
nunca acontecem. Ex:

• Um sensor para detectar se uma porta está aberta e outro para detectar se a mesma
porta está fechada;

• Um sensor para detectar se um objeto é muito pesado e outro se ele é muito leve;
etc.

• Em funções deste tipo, as entradas que nunca ocorrem são chamadas de
indiferenças (don’t care conditions);

• Tanto faz qual será a saída da função nesses casos, já que a entrada nunca ocorre;
• Isso pode ser usada para otimizar a função, adotando 0 ou 1 na saída de acordo com

a conveniência.

4

Especificação incompleta
(don’t care)

December 31, 2012 09:08 vra80547_ch02 Sheet number 75 Page number 95 magenta black

2.14 Incompletely Specified Functions 95

x1 x2
x3 x4

0

00 01 11 10

1 d 0

0 1 d 0

0 0 d 0

1 1 d 1

00

01

11

10

x2 x3+()

x3 x4+()

x1 x2
x3 x4

0

00 01 11 10

1 d 0

0 1 d 0

0 0 d 0

1 1 d 1

00

01

11

10

x2x3

x3x4

(a) SOP implementation

(b) POS implementation

Figure 2.62 Two implementations of the function f (x1, . . . , x4) =∑
m(2, 4, 5, 6, 10) + D(12, 13, 14, 15).

Part (b) shows how the best product-of-sums implementation can be obtained. The
same values are assumed for the don’t cares. The result is

f = (x2 + x3)(x3 + x4)

The freedom in choosing the value of don’t-cares leads to greatly simplified realizations. If
we were to naively exclude the don’t-cares from the synthesis of the function, by assuming
that they always have a value of 0, the resulting SOP expression would be

f = x1x2x3 + x1x3x4 + x2x3x4

and the POS expression would be

f = (x2 + x3)(x3 + x4)(x1 + x2)

Both of these expressions have higher costs than the expressions obtained with a more
appropriate assignment of values to don’t-cares.

Although don’t-care values can be assigned arbitrarily, an arbitrary assignment may
not lead to a minimum-cost implementation of a given function. If there are k don’t-cares,

December 31, 2012 09:08 vra80547_ch02 Sheet number 75 Page number 95 magenta black

2.14 Incompletely Specified Functions 95

x1 x2
x3 x4

0

00 01 11 10

1 d 0

0 1 d 0

0 0 d 0

1 1 d 1

00

01

11

10

x2 x3+()

x3 x4+()

x1 x2
x3 x4

0

00 01 11 10

1 d 0

0 1 d 0

0 0 d 0

1 1 d 1

00

01

11

10

x2x3

x3x4

(a) SOP implementation

(b) POS implementation

Figure 2.62 Two implementations of the function f (x1, . . . , x4) =∑
m(2, 4, 5, 6, 10) + D(12, 13, 14, 15).

Part (b) shows how the best product-of-sums implementation can be obtained. The
same values are assumed for the don’t cares. The result is

f = (x2 + x3)(x3 + x4)

The freedom in choosing the value of don’t-cares leads to greatly simplified realizations. If
we were to naively exclude the don’t-cares from the synthesis of the function, by assuming
that they always have a value of 0, the resulting SOP expression would be

f = x1x2x3 + x1x3x4 + x2x3x4

and the POS expression would be

f = (x2 + x3)(x3 + x4)(x1 + x2)

Both of these expressions have higher costs than the expressions obtained with a more
appropriate assignment of values to don’t-cares.

Although don’t-care values can be assigned arbitrarily, an arbitrary assignment may
not lead to a minimum-cost implementation of a given function. If there are k don’t-cares,

f (x1, x2, x3, x4) = Σm(2, 4, 5, 6, 10) + D(12, 13, 14, 15)

5

Especificação incompleta
(don’t care)

BCD b3 b2 b1 b0 f

0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 1
A 1 0 1 0 −
b 1 0 1 1 −
C 1 1 0 0 −
d 1 1 0 1 −
E 1 1 1 0 −
F 1 1 1 1 −

x1x0

x3x2

00 01 11 10

00

01

11

10

1

1

1 DD

D D DD

0 0 0

0 0 0

0

Implementar f (b3, b2, b1, b0) = Σm(3,6,9) + D(10,11,12,13,14,15) 6

Especificação incompleta
(don’t care)

BCD b3 b2 b1 b0 f

0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 1
A 1 0 1 0 −
b 1 0 1 1 −
C 1 1 0 0 −
d 1 1 0 1 −
E 1 1 1 0 −
F 1 1 1 1 −

x1x0

x3x2

00 01 11 10

00

01

11

10

1

1

1 DD

D D DD

0 0 0

0 0 0

0

Implementar f (b3, b2, b1, b0) = Σm(3,6,9) + D(10,11,12,13,14,15) 6

Especificação incompleta
(don’t care)

BCD b3 b2 b1 b0 f

0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 0
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 0
9 1 0 0 1 1
A 1 0 1 0 −
b 1 0 1 1 −
C 1 1 0 0 −
d 1 1 0 1 −
E 1 1 1 0 −
F 1 1 1 1 −

x1x0

x3x2

00 01 11 10

00

01

11

10

1

1

1 DD

D D DD

0 0 0

0 0 0

0

Implementar f (b3, b2, b1, b0) = Σm(3,6,9) + D(10,11,12,13,14,15) 6

Circuitos com múltiplas saídas

Circuitos com múltiplas saídas

• Frequentemente é necessário implementar funções que são parte de um sistema
maior;

• Pode ser possível compartilhar algumas das portas necessárias na implementação
de funções individuais;

• Essa estratégia nem sempre funciona da melhor maneira, como veremos a seguir;

• Em vez de derivar as expressões individualmente, podemos procurar implicantes
que possam ser compartilhados com vantagem na realização combinada das
funções.

7

Circuitos com múltiplas saídas

December 31, 2012 09:08 vra80547_ch02 Sheet number 77 Page number 97 magenta black

2.15 Multiple-Output Circuits 97

x3x2
x1x0

1

00 01 11 10

0 d 1

0 1 d 1

1 1 d d

1 1 d d

00

01

11

10

a x2x0 x1 x2x0 x3+ + +=

x3
x2

(a) Logic circuit and 7-segment display

x1
x0

1
0

1
1

1

1
1

x0 a

1

b

0 1

1
1

1

0
1

1

0
1

0

0

x1

0

1
1

0

0

x2

0

0
0

0

1

x3

0

0
0

0

0

c

1

0

1

0

0

1

1

0

1

1

1

0

0

0

0

1
1001

1

1

1

1

0

1

1

0

1 1

1

1

1

1

1

0

1
1

1

d

0

1
0

0

1
0

e

1

0

1

1

1

0

1

0

0

1

0

0
0

1

f

1

0
0

1

1
1

g

1

0

1

1

1

1

1

1

0

1

(b) Truth table

x3x2
x1x0

1

00 01 11 10

0 d 1

0 0 d 0

0 0 d d

1 1 d d

00

01

11

10

e x2x0 x1x0+=

(c) The Karnaugh maps for outputs a and e.

ce

a
b
c
d
e
f
g

a

g

bf

d

Logic
circuit

Figure 2.63 Using don’t-care minterms when displaying BCD numbers.

December 31, 2012 09:08 vra80547_ch02 Sheet number 77 Page number 97 magenta black

2.15 Multiple-Output Circuits 97

x3x2
x1x0

1

00 01 11 10

0 d 1

0 1 d 1

1 1 d d

1 1 d d

00

01

11

10

a x2x0 x1 x2x0 x3+ + +=

x3
x2

(a) Logic circuit and 7-segment display

x1
x0

1
0

1
1

1

1
1

x0 a

1

b

0 1

1
1

1

0
1

1

0
1

0

0

x1

0

1
1

0

0

x2

0

0
0

0

1

x3

0

0
0

0

0

c

1

0

1

0

0

1

1

0

1

1

1

0

0

0

0

1
1001

1

1

1

1

0

1

1

0

1 1

1

1

1

1

1

0

1
1

1

d

0

1
0

0

1
0

e

1

0

1

1

1

0

1

0

0

1

0

0
0

1

f

1

0
0

1

1
1

g

1

0

1

1

1

1

1

1

0

1

(b) Truth table

x3x2
x1x0

1

00 01 11 10

0 d 1

0 0 d 0

0 0 d d

1 1 d d

00

01

11

10

e x2x0 x1x0+=

(c) The Karnaugh maps for outputs a and e.

ce

a
b
c
d
e
f
g

a

g

bf

d

Logic
circuit

Figure 2.63 Using don’t-care minterms when displaying BCD numbers.

8

Circuitos com múltiplas saídas

December 31, 2012 09:08 vra80547_ch02 Sheet number 77 Page number 97 magenta black

2.15 Multiple-Output Circuits 97

x3x2
x1x0

1

00 01 11 10

0 d 1

0 1 d 1

1 1 d d

1 1 d d

00

01

11

10

a x2x0 x1 x2x0 x3+ + +=

x3
x2

(a) Logic circuit and 7-segment display

x1
x0

1
0

1
1

1

1
1

x0 a

1

b

0 1

1
1

1

0
1

1

0
1

0

0

x1

0

1
1

0

0

x2

0

0
0

0

1

x3

0

0
0

0

0

c

1

0

1

0

0

1

1

0

1

1

1

0

0

0

0

1
1001

1

1

1

1

0

1

1

0

1 1

1

1

1

1

1

0

1
1

1

d

0

1
0

0

1
0

e

1

0

1

1

1

0

1

0

0

1

0

0
0

1

f

1

0
0

1

1
1

g

1

0

1

1

1

1

1

1

0

1

(b) Truth table

x3x2
x1x0

1

00 01 11 10

0 d 1

0 0 d 0

0 0 d d

1 1 d d

00

01

11

10

e x2x0 x1x0+=

(c) The Karnaugh maps for outputs a and e.

ce

a
b
c
d
e
f
g

a

g

bf

d

Logic
circuit

Figure 2.63 Using don’t-care minterms when displaying BCD numbers.
9

Circuitos com múltiplas saídas

December 31, 2012 09:08 vra80547_ch02 Sheet number 78 Page number 98 magenta black

98 C H A P T E R 2 • Introduction to Logic Circuits

Example 2.16 An example of gate sharing is given in Figure 2.64. Two functions, f1 and f2, of the same
variables are to be implemented. The minimum-cost implementations for these functions
are obtained as shown in parts (a) and (b) of the figure. This results in the expressions

f1 = x1x3 + x1x3 + x2x3x4

f2 = x1x3 + x1x3 + x2x3x4

The cost of f1 is four gates and 10 inputs, for a total of 14. The cost of f2 is the same. Thus
the total cost is 28 if both functions are implemented by separate circuits. A less-expensive
realization is possible if the two circuits are combined into a single circuit with two outputs.
Because the first two product terms are identical in both expressions, the AND gates that

x1 x2
x3 x4 00 01 11 10

1 1

1 1

1 1 1

1 1

00

01

11

10

x1 x2
x3 x4 00 01 11 10

1 1

1 1

1 1

1 1

00

01

11

10

(a) Function (b) Function

1

f1 f2

f1

f2

x2

x3

x4

x1

x3

x1

x3

x2

x3

x4

(c) Combined circuit for f1 f2and

Figure 2.64 An example of multiple-output synthesis.

December 31, 2012 09:08 vra80547_ch02 Sheet number 78 Page number 98 magenta black

98 C H A P T E R 2 • Introduction to Logic Circuits

Example 2.16 An example of gate sharing is given in Figure 2.64. Two functions, f1 and f2, of the same
variables are to be implemented. The minimum-cost implementations for these functions
are obtained as shown in parts (a) and (b) of the figure. This results in the expressions

f1 = x1x3 + x1x3 + x2x3x4

f2 = x1x3 + x1x3 + x2x3x4

The cost of f1 is four gates and 10 inputs, for a total of 14. The cost of f2 is the same. Thus
the total cost is 28 if both functions are implemented by separate circuits. A less-expensive
realization is possible if the two circuits are combined into a single circuit with two outputs.
Because the first two product terms are identical in both expressions, the AND gates that

x1 x2
x3 x4 00 01 11 10

1 1

1 1

1 1 1

1 1

00

01

11

10

x1 x2
x3 x4 00 01 11 10

1 1

1 1

1 1

1 1

00

01

11

10

(a) Function (b) Function

1

f1 f2

f1

f2

x2

x3

x4

x1

x3

x1

x3

x2

x3

x4

(c) Combined circuit for f1 f2and

Figure 2.64 An example of multiple-output synthesis.

December 31, 2012 09:08 vra80547_ch02 Sheet number 78 Page number 98 magenta black

98 C H A P T E R 2 • Introduction to Logic Circuits

Example 2.16 An example of gate sharing is given in Figure 2.64. Two functions, f1 and f2, of the same
variables are to be implemented. The minimum-cost implementations for these functions
are obtained as shown in parts (a) and (b) of the figure. This results in the expressions

f1 = x1x3 + x1x3 + x2x3x4

f2 = x1x3 + x1x3 + x2x3x4

The cost of f1 is four gates and 10 inputs, for a total of 14. The cost of f2 is the same. Thus
the total cost is 28 if both functions are implemented by separate circuits. A less-expensive
realization is possible if the two circuits are combined into a single circuit with two outputs.
Because the first two product terms are identical in both expressions, the AND gates that

x1 x2
x3 x4 00 01 11 10

1 1

1 1

1 1 1

1 1

00

01

11

10

x1 x2
x3 x4 00 01 11 10

1 1

1 1

1 1

1 1

00

01

11

10

(a) Function (b) Function

1

f1 f2

f1

f2

x2

x3

x4

x1

x3

x1

x3

x2

x3

x4

(c) Combined circuit for f1 f2and

Figure 2.64 An example of multiple-output synthesis.
10

Circuitos com múltiplas saídas

December 31, 2012 09:08 vra80547_ch02 Sheet number 80 Page number 100 magenta black

100 C H A P T E R 2 • Introduction to Logic Circuits

x1 x2
x3 x4 00 01 11 10

1

1 1

1

00

01

11

10

(a) Optimal realization of (b) Optimal realization of

1

f3 f4

f3

f4

x1

x4

x3

x4

x1

x1

x2

x2

x4

x4

(d) Combined circuit for f3 f4and

(c) Optimal realization of f3

1

1

x1 x2
x3 x4 00 01 11 10

1

1 1

1

00

01

11

10

11

1

x1 x2
x3 x4 00 01 11 10

1 1

1

1

00

01

11

10

1

1 1

x1 x2
x3 x4 00 01 11 10

1 1

1

1

00

01

11

10

1

1 1

and togetherf4

x2

Figure 2.65 Another example of multiple-output synthesis.

December 31, 2012 09:08 vra80547_ch02 Sheet number 80 Page number 100 magenta black

100 C H A P T E R 2 • Introduction to Logic Circuits

x1 x2
x3 x4 00 01 11 10

1

1 1

1

00

01

11

10

(a) Optimal realization of (b) Optimal realization of

1

f3 f4

f3

f4

x1

x4

x3

x4

x1

x1

x2

x2

x4

x4

(d) Combined circuit for f3 f4and

(c) Optimal realization of f3

1

1

x1 x2
x3 x4 00 01 11 10

1

1 1

1

00

01

11

10

11

1

x1 x2
x3 x4 00 01 11 10

1 1

1

1

00

01

11

10

1

1 1

x1 x2
x3 x4 00 01 11 10

1 1

1

1

00

01

11

10

1

1 1

and togetherf4

x2

Figure 2.65 Another example of multiple-output synthesis.

11

Bibliografia

Bibliografia

• Brown, S. & Vranesic, Z. - Fundamentals of Digital Logic with Verilog Design, 3rd
Ed., Mc Graw Hill, 2009

12

https://www.google.com.br/search?q=filetype%3Apdf+Fundamentals+of+Digital+Logic+with+Verilog+Design+&oq=filetype%3Apdf
https://www.google.com.br/search?q=filetype%3Apdf+Fundamentals+of+Digital+Logic+with+Verilog+Design+&oq=filetype%3Apdf

Lógica Digital (1001351)

Mapas de Karnaugh

Prof. Ricardo Menotti
menotti@ufscar.br

Prof. Luciano de Oliveira Neris
lneris@ufscar.br

Atualizado em: 21 de março de 2024

Departamento de Computação
Centro de Ciências Exatas e de Tecnologia
Universidade Federal de São Carlos

13

mailto:menotti@ufscar.br
mailto:lneris@ufscar.br

	Mapas de Karnaugh
	Especificação incompleta (don't care)
	Circuitos com múltiplas saídas
	Bibliografia

