
Lógica Digital (1001351)

Representação Numérica e Circuitos Aritméticos

Prof. Ricardo Menotti
menotti@ufscar.br

Prof. Luciano de Oliveira Neris
lneris@ufscar.br

Atualizado em: 21 de março de 2024

Departamento de Computação
Centro de Ciências Exatas e de Tecnologia
Universidade Federal de São Carlos

1

mailto:menotti@ufscar.br
mailto:lneris@ufscar.br

Relembrando...

Relembrando...

• No sistema numérico binário, é usada a representação numérica posicional:
• B = bn−1bn−2...b1b0

• V (B) = bn−1 × 2n−1 + bn−2 × 2n−2...b1 × 21 + b0 × 20

• =
n−1∑
i=0

bi × 2i

December 31, 2012 09:12 vra80547_ch03 Sheet number 3 Page number 123 magenta black

3.1 Positional Number Representation 123

3.1.2 Octal and Hexadecimal Representations

The positional number representation can be used for any radix. If the radix is r, then the
number

K = kn −1kn −2 · · · k1k0

has the value

V (K) =
n −1∑

i=0

ki × ri

Our interest is limited to those radices that are most practical. We will use decimal numbers
because they are used by people, and we will use binary numbers because they are used by
computers. In addition, two other radices are useful—8 and 16. Numbers represented with
radix 8 are called octal numbers, while radix-16 numbers are called hexadecimal numbers.
In octal representation the digit values range from 0 to 7. In hexadecimal representation
(often abbreviated as hex), each digit can have one of 16 values. The first ten are denoted
the same as in the decimal system, namely, 0 to 9. Digits that correspond to the decimal
values 10, 11, 12, 13, 14, and 15 are denoted by the letters, A, B, C, D, E, and F. Table 3.1
gives the first 18 integers in these number systems.

In computers the dominant number system is binary. The reason for using the octal and
hexadecimal systems is that they serve as a useful shorthand notation for binary numbers.
One octal digit represents three bits. Thus a binary number is converted into an octal number

Table 3.1 Numbers in different systems.

Decimal Binary Octal Hexadecimal

00 00000 00 00
01 00001 01 01
02 00010 02 02
03 00011 03 03
04 00100 04 04
05 00101 05 05
06 00110 06 06
07 00111 07 07
08 01000 10 08
09 01001 11 09
10 01010 12 0A
11 01011 13 0B
12 01100 14 0C
13 01101 15 0D
14 01110 16 0E
15 01111 17 0F
16 10000 20 10
17 10001 21 11
18 10010 22 12

2

Representações Octal e
Hexadecimal

Representações Octal e Hexadecimal

December 31, 2012 09:12 vra80547_ch03 Sheet number 3 Page number 123 magenta black

3.1 Positional Number Representation 123

3.1.2 Octal and Hexadecimal Representations

The positional number representation can be used for any radix. If the radix is r, then the
number

K = kn −1kn −2 · · · k1k0

has the value

V (K) =
n −1∑

i=0

ki × ri

Our interest is limited to those radices that are most practical. We will use decimal numbers
because they are used by people, and we will use binary numbers because they are used by
computers. In addition, two other radices are useful—8 and 16. Numbers represented with
radix 8 are called octal numbers, while radix-16 numbers are called hexadecimal numbers.
In octal representation the digit values range from 0 to 7. In hexadecimal representation
(often abbreviated as hex), each digit can have one of 16 values. The first ten are denoted
the same as in the decimal system, namely, 0 to 9. Digits that correspond to the decimal
values 10, 11, 12, 13, 14, and 15 are denoted by the letters, A, B, C, D, E, and F. Table 3.1
gives the first 18 integers in these number systems.

In computers the dominant number system is binary. The reason for using the octal and
hexadecimal systems is that they serve as a useful shorthand notation for binary numbers.
One octal digit represents three bits. Thus a binary number is converted into an octal number

Table 3.1 Numbers in different systems.

Decimal Binary Octal Hexadecimal

00 00000 00 00
01 00001 01 01
02 00010 02 02
03 00011 03 03
04 00100 04 04
05 00101 05 05
06 00110 06 06
07 00111 07 07
08 01000 10 08
09 01001 11 09
10 01010 12 0A
11 01011 13 0B
12 01100 14 0C
13 01101 15 0D
14 01110 16 0E
15 01111 17 0F
16 10000 20 10
17 10001 21 11
18 10010 22 12

3

Representações Octal e Hexadecimal

101011010111(2) = 5327(8)

December 31, 2012 09:12 vra80547_ch03 Sheet number 4 Page number 124 magenta black

124 C H A P T E R 3 • Number Representation and Arithmetic Circuits

by taking groups of three bits, starting from the least-significant bit, and replacing them
with the corresponding octal digit. For example, 101011010111 is converted as

1 0 1︸︷︷︸ 0 1 1︸︷︷︸ 0 1 0︸︷︷︸ 1 1 1︸︷︷︸
5 3 2 7

which means that (101011010111)2 = (5327)8. If the number of bits is not a multiple of
three, then we add 0s to the left of the most-significant bit. For example, (10111011)2 =
(273)8 because of the grouping

0 1 0︸︷︷︸ 1 1 1︸︷︷︸ 0 1 1︸︷︷︸
2 7 3

Conversion from octal to binary is just as straightforward; each octal digit is simply replaced
by three bits that denote the same value.

Similarly, a hexadecimal digit represents four bits. For example, a 16-bit number is
represented by four hex digits, as in

(1010111100100101)2 = (AF25)16

using the grouping

1 0 1 0︸ ︷︷ ︸ 1 1 1 1︸ ︷︷ ︸ 0 0 1 0︸ ︷︷ ︸ 0 1 0 1︸ ︷︷ ︸
A F 2 5

Zeros are added to the left of the most-significant bit if the number of bits is not a multiple
of four. For example, (1101101000)2 = (368)16 because of the grouping

0 0 1 1︸ ︷︷ ︸ 0 1 1 0︸ ︷︷ ︸ 1 0 0 0︸ ︷︷ ︸
3 6 8

Conversion from hexadecimal to binary involves straightforward substitution of each hex
digit by four bits that denote the same value.

Binary numbers used in modern computers often have 32 or 64 bits. Written as binary
n -tuples (sometimes called bit vectors), such numbers are awkward for people to deal with.
It is much simpler to deal with them in the form of 8- or 16-digit hex numbers. Because
the arithmetic operations in a digital system usually involve binary numbers, we will focus
on circuits that use such numbers. We will sometimes use the hexadecimal representation
as a convenient shorthand description.

We have introduced the simplest numbers—unsigned integers. It is necessary to be
able to deal with several other types of numbers. We will discuss the representation of
signed numbers, fixed-point numbers, and floating-point numbers later in this chapter. But
first we will examine some simple circuits that operate on numbers to give the reader a
feeling for digital circuits that perform arithmetic operations and to provide motivation for
further discussion.

010111011(2) = 273(8)

4

Representações Octal e Hexadecimal

101011010111(2) = 5327(8)

December 31, 2012 09:12 vra80547_ch03 Sheet number 4 Page number 124 magenta black

124 C H A P T E R 3 • Number Representation and Arithmetic Circuits

by taking groups of three bits, starting from the least-significant bit, and replacing them
with the corresponding octal digit. For example, 101011010111 is converted as

1 0 1︸︷︷︸ 0 1 1︸︷︷︸ 0 1 0︸︷︷︸ 1 1 1︸︷︷︸
5 3 2 7

which means that (101011010111)2 = (5327)8. If the number of bits is not a multiple of
three, then we add 0s to the left of the most-significant bit. For example, (10111011)2 =
(273)8 because of the grouping

0 1 0︸︷︷︸ 1 1 1︸︷︷︸ 0 1 1︸︷︷︸
2 7 3

Conversion from octal to binary is just as straightforward; each octal digit is simply replaced
by three bits that denote the same value.

Similarly, a hexadecimal digit represents four bits. For example, a 16-bit number is
represented by four hex digits, as in

(1010111100100101)2 = (AF25)16

using the grouping

1 0 1 0︸ ︷︷ ︸ 1 1 1 1︸ ︷︷ ︸ 0 0 1 0︸ ︷︷ ︸ 0 1 0 1︸ ︷︷ ︸
A F 2 5

Zeros are added to the left of the most-significant bit if the number of bits is not a multiple
of four. For example, (1101101000)2 = (368)16 because of the grouping

0 0 1 1︸ ︷︷ ︸ 0 1 1 0︸ ︷︷ ︸ 1 0 0 0︸ ︷︷ ︸
3 6 8

Conversion from hexadecimal to binary involves straightforward substitution of each hex
digit by four bits that denote the same value.

Binary numbers used in modern computers often have 32 or 64 bits. Written as binary
n -tuples (sometimes called bit vectors), such numbers are awkward for people to deal with.
It is much simpler to deal with them in the form of 8- or 16-digit hex numbers. Because
the arithmetic operations in a digital system usually involve binary numbers, we will focus
on circuits that use such numbers. We will sometimes use the hexadecimal representation
as a convenient shorthand description.

We have introduced the simplest numbers—unsigned integers. It is necessary to be
able to deal with several other types of numbers. We will discuss the representation of
signed numbers, fixed-point numbers, and floating-point numbers later in this chapter. But
first we will examine some simple circuits that operate on numbers to give the reader a
feeling for digital circuits that perform arithmetic operations and to provide motivation for
further discussion.

010111011(2) = 273(8)

December 31, 2012 09:12 vra80547_ch03 Sheet number 4 Page number 124 magenta black

124 C H A P T E R 3 • Number Representation and Arithmetic Circuits

by taking groups of three bits, starting from the least-significant bit, and replacing them
with the corresponding octal digit. For example, 101011010111 is converted as

1 0 1︸︷︷︸ 0 1 1︸︷︷︸ 0 1 0︸︷︷︸ 1 1 1︸︷︷︸
5 3 2 7

which means that (101011010111)2 = (5327)8. If the number of bits is not a multiple of
three, then we add 0s to the left of the most-significant bit. For example, (10111011)2 =
(273)8 because of the grouping

0 1 0︸︷︷︸ 1 1 1︸︷︷︸ 0 1 1︸︷︷︸
2 7 3

Conversion from octal to binary is just as straightforward; each octal digit is simply replaced
by three bits that denote the same value.

Similarly, a hexadecimal digit represents four bits. For example, a 16-bit number is
represented by four hex digits, as in

(1010111100100101)2 = (AF25)16

using the grouping

1 0 1 0︸ ︷︷ ︸ 1 1 1 1︸ ︷︷ ︸ 0 0 1 0︸ ︷︷ ︸ 0 1 0 1︸ ︷︷ ︸
A F 2 5

Zeros are added to the left of the most-significant bit if the number of bits is not a multiple
of four. For example, (1101101000)2 = (368)16 because of the grouping

0 0 1 1︸ ︷︷ ︸ 0 1 1 0︸ ︷︷ ︸ 1 0 0 0︸ ︷︷ ︸
3 6 8

Conversion from hexadecimal to binary involves straightforward substitution of each hex
digit by four bits that denote the same value.

Binary numbers used in modern computers often have 32 or 64 bits. Written as binary
n -tuples (sometimes called bit vectors), such numbers are awkward for people to deal with.
It is much simpler to deal with them in the form of 8- or 16-digit hex numbers. Because
the arithmetic operations in a digital system usually involve binary numbers, we will focus
on circuits that use such numbers. We will sometimes use the hexadecimal representation
as a convenient shorthand description.

We have introduced the simplest numbers—unsigned integers. It is necessary to be
able to deal with several other types of numbers. We will discuss the representation of
signed numbers, fixed-point numbers, and floating-point numbers later in this chapter. But
first we will examine some simple circuits that operate on numbers to give the reader a
feeling for digital circuits that perform arithmetic operations and to provide motivation for
further discussion.

4

Representações Octal e Hexadecimal

1010111100100101(2) = AF25(16)

December 31, 2012 09:12 vra80547_ch03 Sheet number 4 Page number 124 magenta black

124 C H A P T E R 3 • Number Representation and Arithmetic Circuits

by taking groups of three bits, starting from the least-significant bit, and replacing them
with the corresponding octal digit. For example, 101011010111 is converted as

1 0 1︸︷︷︸ 0 1 1︸︷︷︸ 0 1 0︸︷︷︸ 1 1 1︸︷︷︸
5 3 2 7

which means that (101011010111)2 = (5327)8. If the number of bits is not a multiple of
three, then we add 0s to the left of the most-significant bit. For example, (10111011)2 =
(273)8 because of the grouping

0 1 0︸︷︷︸ 1 1 1︸︷︷︸ 0 1 1︸︷︷︸
2 7 3

Conversion from octal to binary is just as straightforward; each octal digit is simply replaced
by three bits that denote the same value.

Similarly, a hexadecimal digit represents four bits. For example, a 16-bit number is
represented by four hex digits, as in

(1010111100100101)2 = (AF25)16

using the grouping

1 0 1 0︸ ︷︷ ︸ 1 1 1 1︸ ︷︷ ︸ 0 0 1 0︸ ︷︷ ︸ 0 1 0 1︸ ︷︷ ︸
A F 2 5

Zeros are added to the left of the most-significant bit if the number of bits is not a multiple
of four. For example, (1101101000)2 = (368)16 because of the grouping

0 0 1 1︸ ︷︷ ︸ 0 1 1 0︸ ︷︷ ︸ 1 0 0 0︸ ︷︷ ︸
3 6 8

Conversion from hexadecimal to binary involves straightforward substitution of each hex
digit by four bits that denote the same value.

Binary numbers used in modern computers often have 32 or 64 bits. Written as binary
n -tuples (sometimes called bit vectors), such numbers are awkward for people to deal with.
It is much simpler to deal with them in the form of 8- or 16-digit hex numbers. Because
the arithmetic operations in a digital system usually involve binary numbers, we will focus
on circuits that use such numbers. We will sometimes use the hexadecimal representation
as a convenient shorthand description.

We have introduced the simplest numbers—unsigned integers. It is necessary to be
able to deal with several other types of numbers. We will discuss the representation of
signed numbers, fixed-point numbers, and floating-point numbers later in this chapter. But
first we will examine some simple circuits that operate on numbers to give the reader a
feeling for digital circuits that perform arithmetic operations and to provide motivation for
further discussion.

001101101000(2) = 368(16) =

5

Representações Octal e Hexadecimal

1010111100100101(2) = AF25(16)

December 31, 2012 09:12 vra80547_ch03 Sheet number 4 Page number 124 magenta black

124 C H A P T E R 3 • Number Representation and Arithmetic Circuits

by taking groups of three bits, starting from the least-significant bit, and replacing them
with the corresponding octal digit. For example, 101011010111 is converted as

1 0 1︸︷︷︸ 0 1 1︸︷︷︸ 0 1 0︸︷︷︸ 1 1 1︸︷︷︸
5 3 2 7

which means that (101011010111)2 = (5327)8. If the number of bits is not a multiple of
three, then we add 0s to the left of the most-significant bit. For example, (10111011)2 =
(273)8 because of the grouping

0 1 0︸︷︷︸ 1 1 1︸︷︷︸ 0 1 1︸︷︷︸
2 7 3

Conversion from octal to binary is just as straightforward; each octal digit is simply replaced
by three bits that denote the same value.

Similarly, a hexadecimal digit represents four bits. For example, a 16-bit number is
represented by four hex digits, as in

(1010111100100101)2 = (AF25)16

using the grouping

1 0 1 0︸ ︷︷ ︸ 1 1 1 1︸ ︷︷ ︸ 0 0 1 0︸ ︷︷ ︸ 0 1 0 1︸ ︷︷ ︸
A F 2 5

Zeros are added to the left of the most-significant bit if the number of bits is not a multiple
of four. For example, (1101101000)2 = (368)16 because of the grouping

0 0 1 1︸ ︷︷ ︸ 0 1 1 0︸ ︷︷ ︸ 1 0 0 0︸ ︷︷ ︸
3 6 8

Conversion from hexadecimal to binary involves straightforward substitution of each hex
digit by four bits that denote the same value.

Binary numbers used in modern computers often have 32 or 64 bits. Written as binary
n -tuples (sometimes called bit vectors), such numbers are awkward for people to deal with.
It is much simpler to deal with them in the form of 8- or 16-digit hex numbers. Because
the arithmetic operations in a digital system usually involve binary numbers, we will focus
on circuits that use such numbers. We will sometimes use the hexadecimal representation
as a convenient shorthand description.

We have introduced the simplest numbers—unsigned integers. It is necessary to be
able to deal with several other types of numbers. We will discuss the representation of
signed numbers, fixed-point numbers, and floating-point numbers later in this chapter. But
first we will examine some simple circuits that operate on numbers to give the reader a
feeling for digital circuits that perform arithmetic operations and to provide motivation for
further discussion.

001101101000(2) = 368(16) =

December 31, 2012 09:12 vra80547_ch03 Sheet number 4 Page number 124 magenta black

124 C H A P T E R 3 • Number Representation and Arithmetic Circuits

by taking groups of three bits, starting from the least-significant bit, and replacing them
with the corresponding octal digit. For example, 101011010111 is converted as

1 0 1︸︷︷︸ 0 1 1︸︷︷︸ 0 1 0︸︷︷︸ 1 1 1︸︷︷︸
5 3 2 7

which means that (101011010111)2 = (5327)8. If the number of bits is not a multiple of
three, then we add 0s to the left of the most-significant bit. For example, (10111011)2 =
(273)8 because of the grouping

0 1 0︸︷︷︸ 1 1 1︸︷︷︸ 0 1 1︸︷︷︸
2 7 3

Conversion from octal to binary is just as straightforward; each octal digit is simply replaced
by three bits that denote the same value.

Similarly, a hexadecimal digit represents four bits. For example, a 16-bit number is
represented by four hex digits, as in

(1010111100100101)2 = (AF25)16

using the grouping

1 0 1 0︸ ︷︷ ︸ 1 1 1 1︸ ︷︷ ︸ 0 0 1 0︸ ︷︷ ︸ 0 1 0 1︸ ︷︷ ︸
A F 2 5

Zeros are added to the left of the most-significant bit if the number of bits is not a multiple
of four. For example, (1101101000)2 = (368)16 because of the grouping

0 0 1 1︸ ︷︷ ︸ 0 1 1 0︸ ︷︷ ︸ 1 0 0 0︸ ︷︷ ︸
3 6 8

Conversion from hexadecimal to binary involves straightforward substitution of each hex
digit by four bits that denote the same value.

Binary numbers used in modern computers often have 32 or 64 bits. Written as binary
n -tuples (sometimes called bit vectors), such numbers are awkward for people to deal with.
It is much simpler to deal with them in the form of 8- or 16-digit hex numbers. Because
the arithmetic operations in a digital system usually involve binary numbers, we will focus
on circuits that use such numbers. We will sometimes use the hexadecimal representation
as a convenient shorthand description.

We have introduced the simplest numbers—unsigned integers. It is necessary to be
able to deal with several other types of numbers. We will discuss the representation of
signed numbers, fixed-point numbers, and floating-point numbers later in this chapter. But
first we will examine some simple circuits that operate on numbers to give the reader a
feeling for digital circuits that perform arithmetic operations and to provide motivation for
further discussion.

5

Adição de números sem sinal

Adição de números sem sinal

December 31, 2012 09:12 vra80547_ch03 Sheet number 5 Page number 125 magenta black

3.2 Addition of Unsigned Numbers 125

3.2 Addition of Unsigned Numbers

Binary addition is performed in the same way as decimal addition except that the values
of individual digits can be only 0 or 1. In Chapter 2, we already considered the addition
of 2 one-bit numbers, as an example of a simple logic circuit. Now, we will consider this
task in the context of general adder circuits. The one-bit addition entails four possible
combinations, as indicated in Figure 3.1a. Two bits are needed to represent the result of the
addition. The right-most bit is called the sum, s. The left-most bit, which is produced as
a carry-out when both bits being added are equal to 1, is called the carry, c. The addition
operation is defined in the form of a truth table in part (b) of the figure. The sum bit s is
the XOR function. The carry c is the AND function of inputs x and y. A circuit realization
of these functions is shown in Figure 3.1c. This circuit, which implements the addition of
only two bits, is called a half-adder.

Sum
s

0

1

1

0

Carry
c

0

0

0

1

0
0+

0
1+

1000

1
0+

10

1
1+

01

x
y+

sc

SumCarry

(a) The four possible cases

x y

0

0

1

1

0

1

0

1

(b) Truth table

x

y
s

c

HA
x

y

s

c

(c) Circuit (d) Graphical symbol

Figure 3.1 Half-adder.

December 31, 2012 09:12 vra80547_ch03 Sheet number 5 Page number 125 magenta black

3.2 Addition of Unsigned Numbers 125

3.2 Addition of Unsigned Numbers

Binary addition is performed in the same way as decimal addition except that the values
of individual digits can be only 0 or 1. In Chapter 2, we already considered the addition
of 2 one-bit numbers, as an example of a simple logic circuit. Now, we will consider this
task in the context of general adder circuits. The one-bit addition entails four possible
combinations, as indicated in Figure 3.1a. Two bits are needed to represent the result of the
addition. The right-most bit is called the sum, s. The left-most bit, which is produced as
a carry-out when both bits being added are equal to 1, is called the carry, c. The addition
operation is defined in the form of a truth table in part (b) of the figure. The sum bit s is
the XOR function. The carry c is the AND function of inputs x and y. A circuit realization
of these functions is shown in Figure 3.1c. This circuit, which implements the addition of
only two bits, is called a half-adder.

Sum
s

0

1

1

0

Carry
c

0

0

0

1

0
0+

0
1+

1000

1
0+

10

1
1+

01

x
y+

sc

SumCarry

(a) The four possible cases

x y

0

0

1

1

0

1

0

1

(b) Truth table

x

y
s

c

HA
x

y

s

c

(c) Circuit (d) Graphical symbol

Figure 3.1 Half-adder.

December 31, 2012 09:12 vra80547_ch03 Sheet number 5 Page number 125 magenta black

3.2 Addition of Unsigned Numbers 125

3.2 Addition of Unsigned Numbers

Binary addition is performed in the same way as decimal addition except that the values
of individual digits can be only 0 or 1. In Chapter 2, we already considered the addition
of 2 one-bit numbers, as an example of a simple logic circuit. Now, we will consider this
task in the context of general adder circuits. The one-bit addition entails four possible
combinations, as indicated in Figure 3.1a. Two bits are needed to represent the result of the
addition. The right-most bit is called the sum, s. The left-most bit, which is produced as
a carry-out when both bits being added are equal to 1, is called the carry, c. The addition
operation is defined in the form of a truth table in part (b) of the figure. The sum bit s is
the XOR function. The carry c is the AND function of inputs x and y. A circuit realization
of these functions is shown in Figure 3.1c. This circuit, which implements the addition of
only two bits, is called a half-adder.

Sum
s

0

1

1

0

Carry
c

0

0

0

1

0
0+

0
1+

1000

1
0+

10

1
1+

01

x
y+

sc

SumCarry

(a) The four possible cases

x y

0

0

1

1

0

1

0

1

(b) Truth table

x

y
s

c

HA
x

y

s

c

(c) Circuit (d) Graphical symbol

Figure 3.1 Half-adder.

December 31, 2012 09:12 vra80547_ch03 Sheet number 5 Page number 125 magenta black

3.2 Addition of Unsigned Numbers 125

3.2 Addition of Unsigned Numbers

Binary addition is performed in the same way as decimal addition except that the values
of individual digits can be only 0 or 1. In Chapter 2, we already considered the addition
of 2 one-bit numbers, as an example of a simple logic circuit. Now, we will consider this
task in the context of general adder circuits. The one-bit addition entails four possible
combinations, as indicated in Figure 3.1a. Two bits are needed to represent the result of the
addition. The right-most bit is called the sum, s. The left-most bit, which is produced as
a carry-out when both bits being added are equal to 1, is called the carry, c. The addition
operation is defined in the form of a truth table in part (b) of the figure. The sum bit s is
the XOR function. The carry c is the AND function of inputs x and y. A circuit realization
of these functions is shown in Figure 3.1c. This circuit, which implements the addition of
only two bits, is called a half-adder.

Sum
s

0

1

1

0

Carry
c

0

0

0

1

0
0+

0
1+

1000

1
0+

10

1
1+

01

x
y+

sc

SumCarry

(a) The four possible cases

x y

0

0

1

1

0

1

0

1

(b) Truth table

x

y
s

c

HA
x

y

s

c

(c) Circuit (d) Graphical symbol

Figure 3.1 Half-adder.
6

Adição de números sem sinal

December 31, 2012 09:12 vra80547_ch03 Sheet number 6 Page number 126 magenta black

126 C H A P T E R 3 • Number Representation and Arithmetic Circuits

X x4 x3 x2 x1x0=

Y+ y4 y3 y2 y1 y0=

Generated carries

S s4 s3 s2 s1s0=

15()10

10()10

25()10

0 1 1 1 1

0 1 0 1 0

1 1 1 0

1 1 0 0 1

++

xi

yi

si

ci

...

...

ci 1+

...

...

...

...

...

...

...... ...

(a) An example of addition (b) Bit position i

Figure 3.2 Addition of multibit numbers.

A more interesting case is when larger numbers that have multiple bits are involved.
Then it is still necessary to add each pair of bits, but for each bit position i, the addition
operation may include a carry-in from bit position i − 1.

Figure 3.2a presents an example of the addition operation. The two operands are X =
(01111)2 = (15)10 and Y = (01010)2 = (10)10. Five bits are used to represent X and
Y , making it possible to represent integers in the range from 0 to 31; hence the sum
S = X + Y = (25)10 can also be denoted as a five-bit integer. Note the labeling of individual
bits, such that X = x4x3x2x1x0 and Y = y4y3y2y1y0. The figure shows, in a blue color, the
carries generated during the addition process. For example, a carry of 0 is generated when
x0 and y0 are added, a carry of 1 is produced when x1 and y1 are added, and so on.

In Chapter 2 we designed logic circuits by first specifying their behavior in the form
of a truth table. This approach is impractical in designing an adder circuit that can add the
five-bit numbers in Figure 3.2. The required truth table would have 10 input variables, 5
for each number X and Y . It would have 210 = 1024 rows! A better approach is to consider
the addition of each pair of bits, xi and yi, separately.

For bit position 0, there is no carry-in, and hence the addition is the same as for
Figure 3.1. For each other bit position i, the addition involves bits xi and yi, and a carry-in
ci, as illustrated in Figure 3.2b. This observation leads to the design of a logic circuit that
has three inputs xi, yi, and ci, and produces the two outputs si and ci+1. The required truth
table is shown in Figure 3.3a. The sum bit, si, is the modulo-2 sum of xi, yi, and ci. The
carry-out, ci+1, is equal to 1 if the sum of xi, yi, and ci is equal to either 2 or 3. Karnaugh
maps for these functions are shown in part (b) of the figure. For the carry-out function the
optimal sum-of-products realization is

ci+1 = xiyi + xici + yici

For the si function a sum-of-products realization is

si = xiyici + xiyici + xiyici + xiyici

Amore attractive way of implementing this function is by using the XOR gates, as explained
below.

7

Adição de números sem sinal

December 31, 2012 09:12 vra80547_ch03 Sheet number 7 Page number 127 magenta black

3.2 Addition of Unsigned Numbers 127

0
0
0
1
0
1
1
1

ci 1+

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

ci xi yi

00 01 11 10

0

1

xi yi
ci

1

1

1

1

si xi yi ci⊕ ⊕=

00 01 11 10

0

1

xi yi
ci

1

1 1 1

ci 1+ xi yi xici yici+ +=

ci

xi

yi si

ci 1+

(a) Truth table

(b) Karnaugh maps

(c) Circuit

0
1
1
0
1
0
0
1

si

Figure 3.3 Full-adder.

December 31, 2012 09:12 vra80547_ch03 Sheet number 7 Page number 127 magenta black

3.2 Addition of Unsigned Numbers 127

0
0
0
1
0
1
1
1

ci 1+

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

ci xi yi

00 01 11 10

0

1

xi yi
ci

1

1

1

1

si xi yi ci⊕ ⊕=

00 01 11 10

0

1

xi yi
ci

1

1 1 1

ci 1+ xi yi xici yici+ +=

ci

xi

yi si

ci 1+

(a) Truth table

(b) Karnaugh maps

(c) Circuit

0
1
1
0
1
0
0
1

si

Figure 3.3 Full-adder.

December 31, 2012 09:12 vra80547_ch03 Sheet number 7 Page number 127 magenta black

3.2 Addition of Unsigned Numbers 127

0
0
0
1
0
1
1
1

ci 1+

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

ci xi yi

00 01 11 10

0

1

xi yi
ci

1

1

1

1

si xi yi ci⊕ ⊕=

00 01 11 10

0

1

xi yi
ci

1

1 1 1

ci 1+ xi yi xici yici+ +=

ci

xi

yi si

ci 1+

(a) Truth table

(b) Karnaugh maps

(c) Circuit

0
1
1
0
1
0
0
1

si

Figure 3.3 Full-adder.

December 31, 2012 09:12 vra80547_ch03 Sheet number 7 Page number 127 magenta black

3.2 Addition of Unsigned Numbers 127

0
0
0
1
0
1
1
1

ci 1+

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

ci xi yi

00 01 11 10

0

1

xi yi
ci

1

1

1

1

si xi yi ci⊕ ⊕=

00 01 11 10

0

1

xi yi
ci

1

1 1 1

ci 1+ xi yi xici yici+ +=

ci

xi

yi si

ci 1+

(a) Truth table

(b) Karnaugh maps

(c) Circuit

0
1
1
0
1
0
0
1

si

Figure 3.3 Full-adder. 8

Adição de números sem sinal

December 31, 2012 09:12 vra80547_ch03 Sheet number 9 Page number 129 magenta black

3.2 Addition of Unsigned Numbers 129

HA

HAs

c

s

c
ci

xi

yi
ci 1+

si

ci

xi

yi

ci 1+

si

(a) Block diagram

(b) Detailed diagram

Figure 3.4 A decomposed implementation of the full-adder circuit.

3.2.1 Decomposed Full-Adder

In view of the names used for the circuits, one can expect that a full-adder can be constructed
using half-adders. This can be accomplished by creating a multilevel circuit given in
Figure 3.4. It uses two half-adders to form a full-adder. The reader should verify the
functional correctness of this circuit.

3.2.2 Ripple-Carry Adder

To perform addition by hand, we start from the least-significant digit and add pairs of digits,
progressing to the most-significant digit. If a carry is produced in position i, then this carry is
added to the operands in position i + 1. The same arrangement can be used in a logic circuit
that performs addition. For each bit position we can use a full-adder circuit, connected as
shown in Figure 3.5. Note that to be consistent with the customary way of writing numbers,
the least-significant bit position is on the right. Carries that are produced by the full-adders
propagate to the left.

When the operands X and Y are applied as inputs to the adder, it takes some time before
the output sum, S, is valid. Each full-adder introduces a certain delay before its si and ci+1

outputs are valid. Let this delay be denoted as !t. Thus the carry-out from the first stage,
c1, arrives at the second stage !t after the application of the x0 and y0 inputs. The carry-out
from the second stage, c2, arrives at the third stage with a 2!t delay, and so on. The signal
cn −1 is valid after a delay of (n − 1)!t, which means that the complete sum is available

9

Adição de números sem sinal

December 31, 2012 09:12 vra80547_ch03 Sheet number 10 Page number 130 magenta black

130 C H A P T E R 3 • Number Representation and Arithmetic Circuits

FA

xn 1–

cn cn 1–

yn 1–

sn 1–

FA

x1

c2

y1

s1

FA
c1

x0 y0

s0

c0

MSB position LSB position

Figure 3.5 An n -bit ripple-carry adder.

after a delay of n !t. Because of the way the carry signals “ripple” through the full-adder
stages, the circuit in Figure 3.5 is called a ripple-carry adder.

The delay incurred to produce the final sum and carry-out in a ripple-carry adder
depends on the size of the numbers. When 32- or 64-bit numbers are used, this delay
may become unacceptably high. Because the circuit in each full-adder leaves little room
for a drastic reduction in the delay, it may be necessary to seek different structures for
implementation of n -bit adders. We will discuss a technique for building high-speed adders
in Section 3.4.

So far we have dealt with unsigned integers only. The addition of such numbers does
not require a carry-in for stage 0. In Figure 3.5 we included c0 in the diagram so that the
ripple-carry adder can also be used for subtraction of numbers, as we will see in Section 3.3.

3.2.3 Design Example

Suppose that we need a circuit that multiplies an eight-bit unsigned number by 3. Let
A = a7a6 · · · a1a0 denote the number and P = p9p8 · · · p1p0 denote the product P = 3A.
Note that 10 bits are needed to represent the product.

A simple approach to design the required circuit is to use two ripple-carry adders to
add three copies of the number A, as illustrated in Figure 3.6a. The symbol that denotes
each adder is a commonly-used graphical symbol for adders. The letters xi, yi, si, and ci

indicate the meaning of the inputs and outputs according to Figure 3.5. The first adder
produces A + A = 2A. Its result is represented as eight sum bits and the carry from the
most-significant bit. The second adder produces 2A + A = 3A. It has to be a nine-bit adder
to be able to handle the nine bits of 2A, which are generated by the first adder. Because the
yi inputs have to be driven only by the eight bits of A, the ninth input y8 is connected to a
constant 0.

This approach is straightforward, but not very efficient. Because 3A = 2A + A, we
can observe that 2A can be generated by shifting the bits of A one bit-position to the left,
which gives the bit pattern a7a6a5a4a3a2a1a00. According to Equation 3.1, this pattern is

10

Adição de números sem sinal

December 31, 2012 09:12 vra80547_ch03 Sheet number 11 Page number 131 magenta black

3.2 Addition of Unsigned Numbers 131

x7 x0 y7 y0

x7 x0 y8 y0y7x8

s0s7

c7

0

s0s8

c8

P9 P8 P0P 3A= :

x1 x0 y8 y0y7x8

s0s8

c8

0 0

a7A :

P9 P8 P0P 3A= :

(a) Naive approach

(b) Efficient design

a0

a7A : a0

Figure 3.6 Circuit that multiplies an eight-bit unsigned number by 3.

December 31, 2012 09:12 vra80547_ch03 Sheet number 11 Page number 131 magenta black

3.2 Addition of Unsigned Numbers 131

x7 x0 y7 y0

x7 x0 y8 y0y7x8

s0s7

c7

0

s0s8

c8

P9 P8 P0P 3A= :

x1 x0 y8 y0y7x8

s0s8

c8

0 0

a7A :

P9 P8 P0P 3A= :

(a) Naive approach

(b) Efficient design

a0

a7A : a0

Figure 3.6 Circuit that multiplies an eight-bit unsigned number by 3.

December 31, 2012 09:12 vra80547_ch03 Sheet number 11 Page number 131 magenta black

3.2 Addition of Unsigned Numbers 131

x7 x0 y7 y0

x7 x0 y8 y0y7x8

s0s7

c7

0

s0s8

c8

P9 P8 P0P 3A= :

x1 x0 y8 y0y7x8

s0s8

c8

0 0

a7A :

P9 P8 P0P 3A= :

(a) Naive approach

(b) Efficient design

a0

a7A : a0

Figure 3.6 Circuit that multiplies an eight-bit unsigned number by 3.
11

Números com sinal

Números com sinal

December 31, 2012 09:12 vra80547_ch03 Sheet number 12 Page number 132 magenta black

132 C H A P T E R 3 • Number Representation and Arithmetic Circuits

equal to 2A. Then a single ripple-carry adder suffices for implementing 3A, as shown in
Figure 3.6b. This is essentially the same circuit as the second adder in part (a) of the figure.
Note that the input x0 is connected to a constant 0. Note also that in the second adder in part
(a) of the figure the value of x0 is always 0, even though it is driven by the least-significant
bit, s0, of the sum of the first adder. Because x0 = y0 = a0 in the first adder, the sum bit s0

will be 0, whether a0 is 0 or 1.

3.3 Signed Numbers

In the decimal system the sign of a number is indicated by a + or − symbol to the left
of the most-significant digit. In the binary system the sign of a number is denoted by the
left-most bit. For a positive number the left-most bit is equal to 0, and for a negative number
it is equal to 1. Therefore, in signed numbers the left-most bit represents the sign, and the
remaining n − 1 bits represent the magnitude, as illustrated in Figure 3.7. It is important to
note the difference in the location of the most-significant bit (MSB). In unsigned numbers
all bits represent the magnitude of a number; hence all n bits are sign ifican t in defining
the magnitude. Therefore, the MSB is the left-most bit, bn −1. In signed numbers there are
n − 1 significant bits, and the MSB is in bit position bn −2.

bn 1– b1 b0

Magnitude

MSB

(a) Unsigned number

bn 1– b1 b0

Magnitude
Sign

(b) Signed number

bn 2–

0 denotes
1 denotes

+
– MSB

Figure 3.7 Formats for representation of integers.
12

Números com sinal

• Sinal/Magnitude
• +5 = 0101 e −5 = 1101

• Complemento de 1
• K = (2n − 1)− P

• +5 = 0101 e −5 = 1010

• Complemento de 2
• K = (2n − P)

• +5 = 0101 e −5 = 1011
• 0101 10110100 00000001 1000
• 1011 01001100 11111111 1000!

13

Números com sinal

• Sinal/Magnitude
• +5 = 0101 e −5 = 1101

• Complemento de 1
• K = (2n − 1)− P

• +5 = 0101 e −5 = 1010

• Complemento de 2
• K = (2n − P)

• +5 = 0101 e −5 = 1011
• 0101 10110100 00000001 1000
• 1011 01001100 11111111 1000!

13

Números com sinal

• Sinal/Magnitude
• +5 = 0101 e −5 = 1101

• Complemento de 1
• K = (2n − 1)− P

• +5 = 0101 e −5 = 1010

• Complemento de 2
• K = (2n − P)

• +5 = 0101 e −5 = 1011
• 0101 10110100 00000001 1000
• 1011 01001100 11111111 1000!

13

Números com sinal

December 31, 2012 09:12 vra80547_ch03 Sheet number 14 Page number 134 magenta black

134 C H A P T E R 3 • Number Representation and Arithmetic Circuits

Rule for Finding 2’s Complements
Given a number B = bn −1bn −2 · · · b1b0, its 2’s complement, K = kn −1kn −2 · · · k1k0, can

be found by examining the bits of B from right to left and taking the following action: copy
all bits of B that are 0 and the first bit that is 1; then simply complement the rest of the bits.

For example, if B = 0110, then we copy k0 = b0 = 0 and k1 = b1 = 1, and comple-
ment the rest so that k2 = b2 = 0 and k3 = b3 = 1. Hence K = 1010. As another example,
if B = 10110100, then K = 01001100. We leave the proof of this rule as an exercise for
the reader.

Table 3.2 illustrates the interpretation of all 16 four-bit patterns in the three signed-
number representations that we have considered. Note that for both sign-and-magnitude
representation and for 1’s complement representation there are two patterns that represent
the value zero. For 2’s complement there is only one such pattern. Also, observe that the
range of numbers that can be represented with four bits in 2’s complement form is −8 to
+7, while in the other two representations it is −7 to +7.

Using 2’s-complement representation, an n -bit number B = bn −1bn −2 · · · b1b0 repre-
sents the value

V (B) = (−bn −1 × 2n −1) + bn −2 × 2n −2 + · · · + b1 × 21 + b0 × 20 [3.2]

Thus the largest negative number, 100 . . . 00, has the value −2n −1. The largest positive
number, 011 . . . 11, has the value 2n −1 − 1.

Table 3.2 Interpretation of four-bit signed integers.

Sign and
b3b2b1b0 magnitude 1’s complement 2’s complement

0111 +7 +7 +7

0110 +6 +6 +6

0101 +5 +5 +5

0100 +4 +4 +4

0011 +3 +3 +3

0010 +2 +2 +2

0001 +1 +1 +1

0000 +0 +0 +0

1000 −0 −7 −8

1001 −1 −6 −7

1010 −2 −5 −6

1011 −3 −4 −5

1100 −4 −3 −4

1101 −5 −2 −3

1110 −6 −1 −2

1111 −7 −0 −1

14

Números com sinal

December 31, 2012 09:12 vra80547_ch03 Sheet number 16 Page number 136 magenta black

136 C H A P T E R 3 • Number Representation and Arithmetic Circuits

result represent the number 2 rather than 3, which is a wrong result. Interestingly, if we
take the carry-out from the sign-bit position and add it to the result in the least-significant
bit position, the new result is the correct sum of 3. This correction is indicated in blue in
the figure. A similar situation arises when adding (−5) + (−2) = (−7). After the initial
addition the result is wrong because the four bits of the sum are 0111, which represents +7
rather than −7. But again, there is a carry-out from the sign-bit position, which can be used
to correct the result by adding it in the LSB position, as shown in Figure 3.8.

The conclusion from these examples is that the addition of 1’s complement numbers
may or may not be simple. In some cases a correction is needed, which amounts to an extra
addition that must be performed. Consequently, the time needed to add two 1’s complement
numbers may be twice as long as the time needed to add two unsigned numbers.

2’s Complement Addition
Consider the same combinations of numbers as used in the 1’s complement example.

Figure 3.9 indicates how the addition is performed using 2’s complement numbers. Adding
5 + 2 = 7 and (−5) + 2 = (−3) is straightforward. The computation 5 + (−2) = 3 gen-
erates the correct four bits of the result, namely 0011. There is a carry-out from the sign-bit
position, which we can simply ignore. The fourth case is (−5) + (−2) = (−7). Again, the
four bits of the result, 1001, give the correct sum (−7). In this case also, the carry-out from
the sign-bit position can be ignored.

As illustrated by these examples, the addition of 2’s complement numbers is very
simple. When the numbers are added, the result is always correct. If there is a carry-out
from the sign-bit position, it is simply ignored. Therefore, the addition process is the same,
regardless of the signs of the operands. It can be performed by an adder circuit, such as
the one shown in Figure 3.5. Hence the 2’s complement notation is highly suitable for
the implementation of addition operations. We will now consider its use in subtraction
operations.

++

1 1 0 1

1 0 1 1
0 0 1 0

0 1 1 1

0 1 0 1
0 0 1 0

++

1 0 0 1

1 0 1 1
1 1 1 0

0 0 1 1

0 1 0 1
1 1 1 0

11

ignore ignore

5+()
2+()

7+()

+

5+()

3+()

+ 2–()

2+()
5–()

3–()

+

5–()

7–()

+ 2–()

Figure 3.9 Examples of 2’s complement addition. 15

Números com sinal

December 31, 2012 09:12 vra80547_ch03 Sheet number 17 Page number 137 magenta black

3.3 Signed Numbers 137

2’s Complement Subtraction
The easiest way of performing subtraction is to negate the subtrahend and add it to

the minuend. This is done by finding the 2’s complement of the subtrahend and then
performing the addition. Figure 3.10 illustrates the process. The operation 5 − (+2) = 3
involves finding the 2’s complement of +2, which is 1110. When this number is added to
0101, the result is 0011 = (+3) and a carry-out from the sign-bit position occurs, which is
ignored. A similar situation arises for (−5) − (+2) = (−7). In the remaining two cases
there is no carry-out, and the result is correct.

As a graphical aid to visualize the addition and subtraction examples in Figures 3.9 and
3.10, we can place all possible four-bit patterns on a modulo-16 circle given in Figure 3.11a.
If these bit patterns represented unsigned integers, they would be numbers 0 to 15. If they
represent 2’s-complement integers, then the numbers range from −8 to +7, as shown.
The addition operation is done by stepping in the clockwise direction by the magnitude of
the number to be added. For example, −5 + 2 is determined by starting at 1011 (= −5)
and moving clockwise two steps, giving the result 1101 (= −3). Figure 3.11b shows how
subtraction can be performed on the modulo-16 circle, using the example 5 − 2 = 3. We can
start at 0101 (= +5) and move counterclockwise by two steps, which gives 0011 (= +3).
But, we can also use the 2’s complement of 2 and add this value by stepping in the clockwise

–
0 1 0 1
0 0 1 0

5+()
2+()

3+()

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

–
1 0 1 1
0 0 1 0–

1

ignore

+

1 0 0 1

1 0 1 1
1 1 1 0

–
0 1 0 1
1 1 1 0

5+()

7+()

– +

0 1 1 1

0 1 0 1
0 0 1 0

5–()

7–()

2+()

2–()

–
1 0 1 1
1 1 1 0– +

1 1 0 1

1 0 1 1
0 0 1 02–()

5–()

3–()

Figure 3.10 Examples of 2’s complement subtraction.
16

Números com sinal

December 31, 2012 09:12 vra80547_ch03 Sheet number 19 Page number 139 magenta black

3.3 Signed Numbers 139

s0s1sn 1–

x0x1xn 1–

cn n -bit adder

y0y1yn 1–

c0

Add / Sub
control

Figure 3.12 Adder/subtractor unit.

this signal be called Add/Sub. Also, let its value be 0 for addition and 1 for subtraction. To
indicate this fact, we placed a bar over Add. This is a commonly used convention, where
a bar over a name means that the action specified by the name is to be taken if the control
signal has the value 0. Now let each bit of Y be connected to one input of an XOR gate, with
the other input connected to Add/Sub. The outputs of the XOR gates represent Y if Add/Sub
= 0, and they represent the 1’s complement of Y if Add/Sub = 1. This leads to the circuit
in Figure 3.12. The main part of the circuit is an n -bit adder, which can be implemented
using the ripple-carry structure of Figure 3.5. Note that the control signal Add/Sub is also
connected to the carry-in c0. This makes c0 = 1 when subtraction is to be performed, thus
adding the 1 that is needed to form the 2’s complement of Y . When the addition operation
is performed, we will have c0 = 0.

The combined adder/subtractor unit is a good example of an important concept in the
design of logic circuits. It is useful to design circuits to be as flexible as possible and to
exploit common portions of circuits for as many tasks as possible. This approach minimizes
the number of gates needed to implement such circuits, and it reduces the wiring complexity
substantially.

3.3.4 Radix-Complement Schemes∗

The 2’s complement scheme is just a special case of radix-complement schemes which we
discuss in this section. This general discussion can be skipped without loss of continuity in
the context of computer technology.

17

Números com sinal

December 31, 2012 09:12 vra80547_ch03 Sheet number 24 Page number 144 magenta black

144 C H A P T E R 3 • Number Representation and Arithmetic Circuits

++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+()
2+()

9+()

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+()

5+()

+ 2–()

11

c4 0=
c3 1=

c4 0=
c3 0=

c4 1=
c3 1=

c4 1=
c3 0=

2+()
7–()

5–()

+

7–()

9–()

+ 2–()

Figure 3.13 Examples for determination of overflow.

check of this statement, consider the examples in Figure 3.9 where the numbers are small
enough so that overflow does not occur in any case. In the top two examples in the figure,
there is a carry-out of 0 from both sign and MSB positions. In the bottom two examples,
there is a carry-out of 1 from both positions. Therefore, for the examples in Figures 3.9 and
3.13, the occurrence of overflow is detected by

Overflow = c3c4 + c3c4

= c3 ⊕ c4

For n -bit numbers we have

Overflow = cn −1 ⊕ cn

Thus the circuit in Figure 3.12 can be modified to include overflow checking with the
addition of one XOR gate.

An alternative and more intuitive way of detecting the arithmetic overflow is to ob-
serve that overflow occurs if both summands have the same sign but the resulting sum has
a different sign. Let X = x3x2x1x0 and Y = y3y2y1y0 represent four-bit 2’s-complement
numbers, and let S = s3s2s1s0 be the sum S = X + Y . Then

Overflow = x3y3s3 + x3y3s3

The carry-out and overflow signals indicate whether the result of a given addition is too
large to fit into the number of bits available to represent the sum. The carry-out is meaningful
only when unsigned numbers are involved, while the overflow is meaningful only in the
case of signed numbers. In a typical computer, it is prudent to use the same adder circuits
for dealing with both unsigned and signed operands, thus reducing the amount of circuitry
required. This means that both the carry-out and overflow signals should be generated, as

18

Números com sinal

December 31, 2012 09:12 vra80547_ch03 Sheet number 27 Page number 147 magenta black

3.4 Fast Adders 147

x1 y1

g1 p1

s1

Stage 1

x0 y0

g0 p0

s0

Stage 0

c0

c1c2

Figure 3.14 A ripple-carry adder based on expression 3.3.

The slow speed of the ripple-carry adder is caused by the long path along which a carry
signal must propagate. In Figure 3.14 the critical path is from inputs x0 and y0 to the output
c2. It passes through five gates, as highlighted in blue. The path in other stages of an n -bit
adder is the same as in stage 1. Therefore, the total number of gate delays along the critical
path is 2n + 1.

Figure 3.15 gives the first two stages of the carry-lookahead adder, using expression
3.4 to implement the carry-out functions. Thus

c1 = g0 + p0c0

c2 = g1 + p1g0 + p1p0c0

This circuit does not have the long ripple-carry path that is present in Figure 3.14. Instead,
all carry signals are produced after three gate delays: one gate delay is needed to produce
the generate and propagate signals g0, g1, p0, and p1, and two more gate delays are needed
to produce c1 and c2 concurrently. Extending the circuit to n bits, the final carry-out signal

19

Números com sinal

December 31, 2012 09:12 vra80547_ch03 Sheet number 28 Page number 148 magenta black

148 C H A P T E R 3 • Number Representation and Arithmetic Circuits

x1 y1

g1 p1

s1

x0 y0

s0

c2

x0 y0

c0

c1

g0 p0

Figure 3.15 The first two stages of a carry-lookahead adder.

cn would also be produced after only three gate delays because expression 3.4 is just a large
two-level (AND-OR) circuit.

The total delay in the n -bit carry-lookahead adder is four gate delays. The values of
all gi and pi signals are determined after one gate delay. It takes two more gate delays to
evaluate all carry signals. Finally, it takes one more gate delay (XOR) to generate all sum
bits. The key to the good performance of the adder is quick evaluation of carry signals.

The complexity of an n -bit carry-lookahead adder increases rapidly as n becomes larger.
To reduce the complexity, we can use a hierarchical approach in designing large adders.
Suppose that we want to design a 32-bit adder. We can divide this adder into 4 eight-bit
blocks, such that block 0 adds bits 7 . . . 0, block 1 adds bits 15 . . . 8, block 2 adds bits
23 . . . 16, and block 3 adds bits 31 . . . 24. Then we can implement each block as an
eight-bit carry-lookahead adder. The carry-out signals from the four blocks are c8, c16, c24,

20

Bibliografia

Bibliografia

• Brown, S. & Vranesic, Z. - Fundamentals of Digital Logic with Verilog Design, 3rd
Ed., Mc Graw Hill, 2009

21

https://www.google.com.br/search?q=filetype%3Apdf+Fundamentals+of+Digital+Logic+with+Verilog+Design+&oq=filetype%3Apdf
https://www.google.com.br/search?q=filetype%3Apdf+Fundamentals+of+Digital+Logic+with+Verilog+Design+&oq=filetype%3Apdf

Lógica Digital (1001351)

Representação Numérica e Circuitos Aritméticos

Prof. Ricardo Menotti
menotti@ufscar.br

Prof. Luciano de Oliveira Neris
lneris@ufscar.br

Atualizado em: 21 de março de 2024

Departamento de Computação
Centro de Ciências Exatas e de Tecnologia
Universidade Federal de São Carlos

22

mailto:menotti@ufscar.br
mailto:lneris@ufscar.br

	Relembrando...
	Representações Octal e Hexadecimal
	Adição de números sem sinal
	Números com sinal
	Bibliografia

