
Lógica Digital (1001351)

Circuitos Combinacionais: Multiplexadores

Prof. Ricardo Menotti
menotti@ufscar.br

Prof. Luciano de Oliveira Neris
lneris@ufscar.br

Atualizado em: 1 de abril de 2024

Departamento de Computação
Centro de Ciências Exatas e de Tecnologia
Universidade Federal de São Carlos

1

mailto:menotti@ufscar.br
mailto:lneris@ufscar.br

Multiplexador 2-para-1

December 31, 2012 09:08 vra80547_ch02 Sheet number 42 Page number 62 magenta black

62 C H A P T E R 2 • Introduction to Logic Circuits

s f s x1 x2

f s x1 x2

0 x1

1 x2

(d) More compact truth-table representation

s x1 x2

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

(a) Truth table

f

x1

x2

s
f

s

x1

x2

0

1

(c) Graphical symbol(b) Circuit

(, ,)

(, ,)

Figure 2.33 Implementation of a multiplexer.

A circuit that implements this function is shown in Figure 2.33b. Circuits of this type are
used so extensively that they are given a special name. A circuit that generates an output
that exactly reflects the state of one of a number of data inputs, based on the value of one
or more selection control inputs, is called a multiplexer. We say that a multiplexer circuit
“multiplexes” input signals onto a single output.

2

figure4.23.v

1 module mux2to1 (w0, w1, s, f);
2 input w0, w1, s;
3 output f;
4

5 assign f = s ? w1 : w0;
6 endmodule

3

figure4.24.v

1 module mux2to1 (w0, w1, s, f);
2 input w0, w1, s;
3 output reg f;
4

5 always @(w0, w1, s)
6 f = s ? w1 : w0;
7 endmodule

4

figure4.26.v

1 module mux2to1 (w0, w1, s, f);
2 input w0, w1, s;
3 output reg f;
4

5 always @(w0, w1, s)
6 if (s==0)
7 f = w0;
8 else
9 f = w1;

10 endmodule

5

Multiplexador 4-para-1

December 31, 2012 09:12 vra80547_ch04 Sheet number 3 Page number 191 magenta black

4.1 Multiplexers 191

(a) Graphical symbol

f

s1

w0
w1

00

01

(b) Truth table

w0
w1

s0

w2
w3

10

11

0
0
1
1

1
0
1

fs1

0

s0

w2
w3

f

(c) Circuit

s1

w0

w1

s0

w2

w3

Figure 4.2 A 4-to-1 multiplexer.

A sum-of-products implementation of the 4-to-1 multiplexer appears in Figure 4.2c. It
realizes the multiplexer function

f = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3

It is possible to build larger multiplexers using the same approach. Usually, the num-
ber of data inputs, n , is an integer power of two. A multiplexer that has n data inputs,
w0, . . . , wn −1, requires ⌈ log2n ⌉ select inputs. Larger multiplexers can also be constructed
from smaller multiplexers. For example, the 4-to-1 multiplexer can be built using three
2-to-1 multiplexers as illustrated in Figure 4.3. Figure 4.4 shows how a 16-to-1 multiplexer
is constructed with five 4-to-1 multiplexers.

December 31, 2012 09:12 vra80547_ch04 Sheet number 3 Page number 191 magenta black

4.1 Multiplexers 191

(a) Graphical symbol

f

s1

w0
w1

00

01

(b) Truth table

w0
w1

s0

w2
w3

10

11

0
0
1
1

1
0
1

fs1

0

s0

w2
w3

f

(c) Circuit

s1

w0

w1

s0

w2

w3

Figure 4.2 A 4-to-1 multiplexer.

A sum-of-products implementation of the 4-to-1 multiplexer appears in Figure 4.2c. It
realizes the multiplexer function

f = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3

It is possible to build larger multiplexers using the same approach. Usually, the num-
ber of data inputs, n , is an integer power of two. A multiplexer that has n data inputs,
w0, . . . , wn −1, requires ⌈ log2n ⌉ select inputs. Larger multiplexers can also be constructed
from smaller multiplexers. For example, the 4-to-1 multiplexer can be built using three
2-to-1 multiplexers as illustrated in Figure 4.3. Figure 4.4 shows how a 16-to-1 multiplexer
is constructed with five 4-to-1 multiplexers.

December 31, 2012 09:12 vra80547_ch04 Sheet number 3 Page number 191 magenta black

4.1 Multiplexers 191

(a) Graphical symbol

f

s1

w0
w1

00

01

(b) Truth table

w0
w1

s0

w2
w3

10

11

0
0
1
1

1
0
1

fs1

0

s0

w2
w3

f

(c) Circuit

s1

w0

w1

s0

w2

w3

Figure 4.2 A 4-to-1 multiplexer.

A sum-of-products implementation of the 4-to-1 multiplexer appears in Figure 4.2c. It
realizes the multiplexer function

f = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3

It is possible to build larger multiplexers using the same approach. Usually, the num-
ber of data inputs, n , is an integer power of two. A multiplexer that has n data inputs,
w0, . . . , wn −1, requires ⌈ log2n ⌉ select inputs. Larger multiplexers can also be constructed
from smaller multiplexers. For example, the 4-to-1 multiplexer can be built using three
2-to-1 multiplexers as illustrated in Figure 4.3. Figure 4.4 shows how a 16-to-1 multiplexer
is constructed with five 4-to-1 multiplexers.

6

Multiplexador 4-para-1

December 31, 2012 09:12 vra80547_ch04 Sheet number 4 Page number 192 magenta black

192 C H A P T E R 4 • Combinational-Circuit Building Blocks

s0

w0

w1

0

1

w2

w3

0

1

f
0

1

s1

Figure 4.3 Using 2-to-1 multiplexers to build a 4-to-1
multiplexer.

w8

w11

s1

w0

s0

w3

w4

w7

w12

w15

s3

s2

f

Figure 4.4 A 16-to-1 multiplexer.

7

figure4.25.v

1 module mux4to1 (w0, w1, w2, w3, S, f);
2 input w0, w1, w2, w3;
3 input [1:0] S;
4 output f;
5

6 assign f = S[1] ? (S[0] ? w3 : w2) : (S[0] ? w1 : w0);
7 endmodule

8

figure4.27.v

1 module mux4to1 (w0, w1, w2, w3, S, f);
2 input w0, w1, w2, w3;
3 input [1:0] S;
4 output reg f;
5

6 always @(*)
7 if (S == 2'b00)
8 f = w0;
9 else if (S == 2'b01)

10 f = w1;
11 else if (S == 2'b10)
12 f = w2;
13 else if (S == 2'b11)
14 f = w3;
15 endmodule

9

figure4.28.v

1 module mux4to1 (W, S, f);
2 input [0:3] W;
3 input [1:0] S;
4 output reg f;
5

6 always @(W, S)
7 if (S == 0)
8 f = W[0];
9 else if (S == 1)

10 f = W[1];
11 else if (S == 2)
12 f = W[2];
13 else if (S == 3)
14 f = W[3];
15 endmodule

10

figure4.30.v

1 module mux4to1 (W, S, f);
2 input [0:3] W;
3 input [1:0] S;
4 output reg f;
5

6 always @(W, S)
7 case (S)
8 0: f = W[0];
9 1: f = W[1];

10 2: f = W[2];
11 3: f = W[3];
12 endcase
13 endmodule

11

Multiplexador 16-para-1

December 31, 2012 09:12 vra80547_ch04 Sheet number 4 Page number 192 magenta black

192 C H A P T E R 4 • Combinational-Circuit Building Blocks

s0

w0

w1

0

1

w2

w3

0

1

f
0

1

s1

Figure 4.3 Using 2-to-1 multiplexers to build a 4-to-1
multiplexer.

w8

w11

s1

w0

s0

w3

w4

w7

w12

w15

s3

s2

f

Figure 4.4 A 16-to-1 multiplexer.

12

figure4.29.v

1 module mux16to1 (W, S, f);
2 input [0:15]W;
3 input [3:0] S;
4 output f;
5 wire [0:3] M;
6

7 mux4to1 Mux1 (W[0:3], S[1:0], M[0]);
8 mux4to1 Mux2 (W[4:7], S[1:0], M[1]);
9 mux4to1 Mux3 (W[8:11], S[1:0], M[2]);

10 mux4to1 Mux4 (W[12:15], S[1:0], M[3]);
11 mux4to1 Mux5 (M[0:3], S[3:2], f);
12 endmodule

13

figure4.42.v

1 module mux16to1 (W, S16, f);
2 input [0:15]W;
3 input [3:0] S16;
4 output reg f;
5
6 always @(W, S16)
7 case (S16[3:2])
8 0: mux4to1 (W[0:3], S16[1:0], f);
9 1: mux4to1 (W[4:7], S16[1:0], f);

10 2: mux4to1 (W[8:11], S16[1:0], f);
11 3: mux4to1 (W[12:15], S16[1:0], f);
12 endcase
13 // Task that specifies a 4-to-1 multiplexer
14 task mux4to1;
15 input [0:3] X;
16 input [1:0] S4;
17 output reg g;
18 case (S4)
19 0: g = X[0];
20 1: g = X[1];
21 2: g = X[2];
22 3: g = X[3];
23 endcase
24 endtask
25 endmodule 14

figure4.43.v

1 module mux16to1 (W, S16, f);
2 input [0:15]W;
3 input [3:0] S16;
4 output reg f;
5 // Function that specifies a 4-to-1 multiplexer
6 function mux4to1;
7 input [0:3] X;
8 input [1:0] S4;
9 case (S4)

10 0: mux4to1 = X[0];
11 1: mux4to1 = X[1];
12 2: mux4to1 = X[2];
13 3: mux4to1 = X[3];
14 endcase
15 endfunction
16
17 always @(W, S16)
18 case (S16[3:2])
19 0: f = mux4to1 (W[0:3], S16[1:0]);
20 1: f = mux4to1 (W[4:7], S16[1:0]);
21 2: f = mux4to1 (W[8:11], S16[1:0]);
22 3: f = mux4to1 (W[12:15], S16[1:0]);
23 endcase
24 endmodule

15

Crossbar 2x2

December 31, 2012 09:12 vra80547_ch04 Sheet number 5 Page number 193 magenta black

4.1 Multiplexers 193

x1 0

1

x2 0

1

s

y1

y2

x1

x2

y1

y2

(a) A 2x2 crossbar switch

(b) Implementation using multiplexers

s

Figure 4.5 A practical application of multiplexers.

Example 4.1Figure 4.5 shows a circuit that has two inputs, x1 and x2, and two outputs, y1 and y2. As
indicated by the blue lines, the function of the circuit is to allow either of its inputs to be
connected to either of its outputs, under the control of another input, s. A circuit that has
n inputs and k outputs, whose sole function is to provide a capability to connect any input
to any output, is usually referred to as an n ×k crossbar switch. Crossbars of various sizes
can be created, with different numbers of inputs and outputs. When there are two inputs
and two outputs, it is called a 2×2 crossbar.

Figure 4.5b shows how the 2×2 crossbar can be implemented using 2-to-1 multiplexers.
The multiplexer select inputs are controlled by the signal s. If s = 0, the crossbar connects
x1 to y1 and x2 to y2, while if s = 1, the crossbar connects x1 to y2 and x2 to y1. Crossbar
switches are useful in many practical applications in which it is necessary to be able to
connect one set of wires to another set of wires, where the connection pattern changes from
time to time.

4.1.1 Synthesis of Logic Functions Using Multiplexers

Multiplexers are useful in many practical applications, such as the one described above.
They can also be used in a more general way to synthesize logic functions. Consider the

16

Síntese de funções lógicas usando
multiplexadores

Síntese de funções lógicas usando multiplexadores

Teorema de Shannon:
f (w1,w2, ...,wn) = w1.f (0,w2, ...,wn) + w1.f (1,w2, ...,wn)

17

Síntese de funções lógicas usando multiplexadores

December 31, 2012 09:12 vra80547_ch04 Sheet number 6 Page number 194 magenta black

194 C H A P T E R 4 • Combinational-Circuit Building Blocks

(a) Implementation using a 4-to-1 multiplexer

f

w1

0
1

0
1

w2

1
0

0
0
1
1

1
0
1

fw1

0

w2

1
0

(b) Modified truth table

0
1

0
0
1
1

1
0
1

fw1

0

w2

1
0

f
w2

w1

0
1

fw1

w2

w2

(c) Circuit

Figure 4.6 Synthesis of a logic function using mutiplexers.

example in Figure 4.6a. The truth table defines the function f = w1 ⊕ w2. This function
can be implemented by a 4-to-1 multiplexer in which the values of f in each row of the
truth table are connected as constants to the multiplexer data inputs. The multiplexer select
inputs are driven by w1 and w2. Thus for each valuation of w1w2, the output f is equal to
the function value in the corresponding row of the truth table.

The above implementation is straightforward, but it is not very efficient. A better
implementation can be derived by manipulating the truth table as indicated in Figure 4.6b,
which allows f to be implemented by a single 2-to-1 multiplexer. One of the input signals,
w1 in this example, is chosen as the select input of the 2-to-1 multiplexer. The truth table
is redrawn to indicate the value of f for each value of w1. When w1 = 0, f has the same
value as input w2, and when w1 = 1, f has the value of w2. The circuit that implements
this truth table is given in Figure 4.6c. This procedure can be applied to synthesize a circuit
that implements any logic function.

December 31, 2012 09:12 vra80547_ch04 Sheet number 6 Page number 194 magenta black

194 C H A P T E R 4 • Combinational-Circuit Building Blocks

(a) Implementation using a 4-to-1 multiplexer

f

w1

0
1

0
1

w2

1
0

0
0
1
1

1
0
1

fw1

0

w2

1
0

(b) Modified truth table

0
1

0
0
1
1

1
0
1

fw1

0

w2

1
0

f
w2

w1

0
1

fw1

w2

w2

(c) Circuit

Figure 4.6 Synthesis of a logic function using mutiplexers.

example in Figure 4.6a. The truth table defines the function f = w1 ⊕ w2. This function
can be implemented by a 4-to-1 multiplexer in which the values of f in each row of the
truth table are connected as constants to the multiplexer data inputs. The multiplexer select
inputs are driven by w1 and w2. Thus for each valuation of w1w2, the output f is equal to
the function value in the corresponding row of the truth table.

The above implementation is straightforward, but it is not very efficient. A better
implementation can be derived by manipulating the truth table as indicated in Figure 4.6b,
which allows f to be implemented by a single 2-to-1 multiplexer. One of the input signals,
w1 in this example, is chosen as the select input of the 2-to-1 multiplexer. The truth table
is redrawn to indicate the value of f for each value of w1. When w1 = 0, f has the same
value as input w2, and when w1 = 1, f has the value of w2. The circuit that implements
this truth table is given in Figure 4.6c. This procedure can be applied to synthesize a circuit
that implements any logic function.

December 31, 2012 09:12 vra80547_ch04 Sheet number 6 Page number 194 magenta black

194 C H A P T E R 4 • Combinational-Circuit Building Blocks

(a) Implementation using a 4-to-1 multiplexer

f

w1

0
1

0
1

w2

1
0

0
0
1
1

1
0
1

fw1

0

w2

1
0

(b) Modified truth table

0
1

0
0
1
1

1
0
1

fw1

0

w2

1
0

f
w2

w1

0
1

fw1

w2

w2

(c) Circuit

Figure 4.6 Synthesis of a logic function using mutiplexers.

example in Figure 4.6a. The truth table defines the function f = w1 ⊕ w2. This function
can be implemented by a 4-to-1 multiplexer in which the values of f in each row of the
truth table are connected as constants to the multiplexer data inputs. The multiplexer select
inputs are driven by w1 and w2. Thus for each valuation of w1w2, the output f is equal to
the function value in the corresponding row of the truth table.

The above implementation is straightforward, but it is not very efficient. A better
implementation can be derived by manipulating the truth table as indicated in Figure 4.6b,
which allows f to be implemented by a single 2-to-1 multiplexer. One of the input signals,
w1 in this example, is chosen as the select input of the 2-to-1 multiplexer. The truth table
is redrawn to indicate the value of f for each value of w1. When w1 = 0, f has the same
value as input w2, and when w1 = 1, f has the value of w2. The circuit that implements
this truth table is given in Figure 4.6c. This procedure can be applied to synthesize a circuit
that implements any logic function.

18

Síntese de funções lógicas usando multiplexadores

December 31, 2012 09:12 vra80547_ch04 Sheet number 7 Page number 195 magenta black

4.1 Multiplexers 195

w3

w3

f

w1

0

w2

1

(a) Modified truth table

(b) Circuit

00
0
1
1

1
0
1

fw1

0

w2

1

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w1 w2 w3 f

0
0
0
0
1
1
1
1

w3

Figure 4.7 Implementation of the three-input majority function
using a 4-to-1 multiplexer.

Example 4.2Figure 4.7a gives the truth table for the three-input majority function, and it shows how the
truth table can be modified to implement the function using a 4-to-1 multiplexer. Any two
of the three inputs may be chosen as the multiplexer select inputs. We have chosen w1 and
w2 for this purpose, resulting in the circuit in Figure 4.7b.

Example 4.3Figure 4.8a indicates how the function f = w1 ⊕ w2 ⊕ w3 can be implemented using 2-to-1
multiplexers. When w1 = 0, f is equal to the XOR of w2 and w3, and when w1 = 1, f
is the XNOR of w2 and w3. Part (b) of the figure gives a corresponding circuit. The left
multiplexer in the circuit produces w2 ⊕ w3, using the result from Figure 4.6, and the right
multiplexer uses the value of w1 to select either w2 ⊕ w3 or its complement. Note that we
could have derived this circuit directly by writing the function as f = (w2 ⊕ w3) ⊕ w1.

Figure 4.9 gives an implementation of the three-input XOR function using a 4-to-1
multiplexer. Choosing w1 and w2 for the select inputs results in the circuit shown.

December 31, 2012 09:12 vra80547_ch04 Sheet number 7 Page number 195 magenta black

4.1 Multiplexers 195

w3

w3

f

w1

0

w2

1

(a) Modified truth table

(b) Circuit

00
0
1
1

1
0
1

fw1

0

w2

1

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w1 w2 w3 f

0
0
0
0
1
1
1
1

w3

Figure 4.7 Implementation of the three-input majority function
using a 4-to-1 multiplexer.

Example 4.2Figure 4.7a gives the truth table for the three-input majority function, and it shows how the
truth table can be modified to implement the function using a 4-to-1 multiplexer. Any two
of the three inputs may be chosen as the multiplexer select inputs. We have chosen w1 and
w2 for this purpose, resulting in the circuit in Figure 4.7b.

Example 4.3Figure 4.8a indicates how the function f = w1 ⊕ w2 ⊕ w3 can be implemented using 2-to-1
multiplexers. When w1 = 0, f is equal to the XOR of w2 and w3, and when w1 = 1, f
is the XNOR of w2 and w3. Part (b) of the figure gives a corresponding circuit. The left
multiplexer in the circuit produces w2 ⊕ w3, using the result from Figure 4.6, and the right
multiplexer uses the value of w1 to select either w2 ⊕ w3 or its complement. Note that we
could have derived this circuit directly by writing the function as f = (w2 ⊕ w3) ⊕ w1.

Figure 4.9 gives an implementation of the three-input XOR function using a 4-to-1
multiplexer. Choosing w1 and w2 for the select inputs results in the circuit shown.

December 31, 2012 09:12 vra80547_ch04 Sheet number 7 Page number 195 magenta black

4.1 Multiplexers 195

w3

w3

f

w1

0

w2

1

(a) Modified truth table

(b) Circuit

00
0
1
1

1
0
1

fw1

0

w2

1

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w1 w2 w3 f

0
0
0
0
1
1
1
1

w3

Figure 4.7 Implementation of the three-input majority function
using a 4-to-1 multiplexer.

Example 4.2Figure 4.7a gives the truth table for the three-input majority function, and it shows how the
truth table can be modified to implement the function using a 4-to-1 multiplexer. Any two
of the three inputs may be chosen as the multiplexer select inputs. We have chosen w1 and
w2 for this purpose, resulting in the circuit in Figure 4.7b.

Example 4.3Figure 4.8a indicates how the function f = w1 ⊕ w2 ⊕ w3 can be implemented using 2-to-1
multiplexers. When w1 = 0, f is equal to the XOR of w2 and w3, and when w1 = 1, f
is the XNOR of w2 and w3. Part (b) of the figure gives a corresponding circuit. The left
multiplexer in the circuit produces w2 ⊕ w3, using the result from Figure 4.6, and the right
multiplexer uses the value of w1 to select either w2 ⊕ w3 or its complement. Note that we
could have derived this circuit directly by writing the function as f = (w2 ⊕ w3) ⊕ w1.

Figure 4.9 gives an implementation of the three-input XOR function using a 4-to-1
multiplexer. Choosing w1 and w2 for the select inputs results in the circuit shown.

19

Síntese de funções lógicas usando multiplexadores

December 31, 2012 09:12 vra80547_ch04 Sheet number 8 Page number 196 magenta black

196 C H A P T E R 4 • Combinational-Circuit Building Blocks

(a) Truth table

0 0
0 1
1 0
1 1

0
1
1
0

0 0
0 1
1 0
1 1

1
0
0
1

w w w f

0
0
0
0
1
1
1
1

w w⊕

w w⊕

f

w

w

(b) Circuit

w

Figure 4.8 Three-input XOR implemented with 2-to-1 multiplexers.

f

w1

w2

(a) Truth table (b) Circuit

0 0
0 1
1 0
1 1

0
1
1
0

0 0
0 1
1 0
1 1

1
0
0
1

w1 w2 w3 f

0
0
0
0
1
1
1
1

w3

w3

w3

w3

w3

Figure 4.9 Three-input XOR implemented with a 4-to-1 multiplexer.

4.1.2 Multiplexer Synthesis Using Shannon’s Expansion

Figures 4.6 through 4.9 illustrate how truth tables can be interpreted to implement logic
functions using multiplexers. In each case the inputs to the multiplexers are the constants
0 and 1, or some variable or its complement. Besides using such simple inputs, it is
possible to connect more complex circuits as inputs to a multiplexer, allowing functions to
be synthesized using a combination of multiplexers and other logic gates. Suppose that we
want to implement the three-input majority function in Figure 4.7 using a 2-to-1 multiplexer

20

Síntese de funções lógicas usando multiplexadores

December 31, 2012 09:12 vra80547_ch04 Sheet number 8 Page number 196 magenta black

196 C H A P T E R 4 • Combinational-Circuit Building Blocks

(a) Truth table

0 0
0 1
1 0
1 1

0
1
1
0

0 0
0 1
1 0
1 1

1
0
0
1

w w w f

0
0
0
0
1
1
1
1

w w⊕

w w⊕

f

w

w

(b) Circuit

w

Figure 4.8 Three-input XOR implemented with 2-to-1 multiplexers.

f

w1

w2

(a) Truth table (b) Circuit

0 0
0 1
1 0
1 1

0
1
1
0

0 0
0 1
1 0
1 1

1
0
0
1

w1 w2 w3 f

0
0
0
0
1
1
1
1

w3

w3

w3

w3

w3

Figure 4.9 Three-input XOR implemented with a 4-to-1 multiplexer.

4.1.2 Multiplexer Synthesis Using Shannon’s Expansion

Figures 4.6 through 4.9 illustrate how truth tables can be interpreted to implement logic
functions using multiplexers. In each case the inputs to the multiplexers are the constants
0 and 1, or some variable or its complement. Besides using such simple inputs, it is
possible to connect more complex circuits as inputs to a multiplexer, allowing functions to
be synthesized using a combination of multiplexers and other logic gates. Suppose that we
want to implement the three-input majority function in Figure 4.7 using a 2-to-1 multiplexer

21

Síntese de funções lógicas usando multiplexadores

December 31, 2012 09:12 vra80547_ch04 Sheet number 9 Page number 197 magenta black

4.1 Multiplexers 197

(a) Truth table

0 0
0 1
1 0
1 1

0
0
0
1

0 0
0 1
1 0
1 1

0
1
1
1

w1 w2 w3 f

0
0
0
0
1
1
1
1

(b) Circuit

0
1

fw1

w2w3

w2 w3+

f

w3

w1w2

Figure 4.10 The three-input majority function implemented using a
2-to-1 multiplexer.

in this way. Figure 4.10 shows an intuitive way of realizing this function. The truth table
can be modified as shown on the right. If w1 = 0, then f = w2w3, and if w1 = 1, then
f = w2 + w3. Using w1 as the select input for a 2-to-1 multiplexer leads to the circuit in
Figure 4.10b.

This implementation can be derived using algebraic manipulation as follows. The
function in Figure 4.10a is expressed in sum-of-products form as

f = w1w2w3 + w1w2w3 + w1w2w3 + w1w2w3

It can be manipulated into

f = w1(w2w3) + w1(w2w3 + w2w3 + w2w3)

= w1(w2w3) + w1(w2 + w3)

which corresponds to the circuit in Figure 4.10b.
Multiplexer implementations of logic functions require that a given function be decom-

posed in terms of the variables that are used as the select inputs. This can be accomplished
by means of a theorem proposed by Claude Shannon [1].

22

Bibliografia

Bibliografia

• Brown, S. & Vranesic, Z. - Fundamentals of Digital Logic with Verilog Design, 3rd
Ed., Mc Graw Hill, 2009

23

https://www.google.com.br/search?q=filetype%3Apdf+Fundamentals+of+Digital+Logic+with+Verilog+Design+&oq=filetype%3Apdf
https://www.google.com.br/search?q=filetype%3Apdf+Fundamentals+of+Digital+Logic+with+Verilog+Design+&oq=filetype%3Apdf

Lógica Digital (1001351)

Circuitos Combinacionais: Multiplexadores

Prof. Ricardo Menotti
menotti@ufscar.br

Prof. Luciano de Oliveira Neris
lneris@ufscar.br

Atualizado em: 1 de abril de 2024

Departamento de Computação
Centro de Ciências Exatas e de Tecnologia
Universidade Federal de São Carlos

24

mailto:menotti@ufscar.br
mailto:lneris@ufscar.br

	Síntese de funções lógicas usando multiplexadores
	Bibliografia

