
Lógica Digital (1001351)

Circuitos Combinacionais: Conversores de códigos

Prof. Ricardo Menotti
menotti@ufscar.br

Prof. Luciano de Oliveira Neris
lneris@ufscar.br

Atualizado em: 1 de abril de 2024

Departamento de Computação
Centro de Ciências Exatas e de Tecnologia
Universidade Federal de São Carlos

1

mailto:menotti@ufscar.br
mailto:lneris@ufscar.br


Decodificadores



Decodificadores

December 31, 2012 09:12 vra80547_ch04 Sheet number 13 Page number 201 magenta black

4.2 Decoders 201

4.2 Decoders

Consider the logic circuit in Figure 4.13. It has two inputs, w1 and w0, and four outputs,
y0, y1, y2, and y3. As shown in the truth table, only one of the outputs is asserted at a time,
and each output corresponds to one valuation of the inputs. Setting the inputs w1w0 to 00,
01, 10, or 11 causes the output y0, y1, y2, or y3 to be set to 1, respectively. This type of
circuit is called a bin ary decoder. Its inputs represent a binary number, which is decoded
to assert the corresponding output. A circuit symbol and logic circuit for this decoder are
shown in parts (b) and (c) of the figure. Each output is driven by an AND gate that decodes
the corresponding valuation of w1w0.

It is useful to include an en able input, En , in a decoder circuit, as illustrated in Fig-
ure 4.14. When enabled by setting En = 1 the decoder behaves as presented in Figure 4.13.

(b) Graphical symbol(a) Truth table

0
0
1
1

1
0
1

y0w1

0

w0

(c) Logic circuit

w1

w0

0
0
0

1

y1

1
0
0

0

y2

0
1
0

0

y3

0
0
1

0

y0

y1

y2

y3

w0

y0

w1

y1
y2
y3

Figure 4.13 A 2-to-4 decoder.

December 31, 2012 09:12 vra80547_ch04 Sheet number 13 Page number 201 magenta black

4.2 Decoders 201

4.2 Decoders

Consider the logic circuit in Figure 4.13. It has two inputs, w1 and w0, and four outputs,
y0, y1, y2, and y3. As shown in the truth table, only one of the outputs is asserted at a time,
and each output corresponds to one valuation of the inputs. Setting the inputs w1w0 to 00,
01, 10, or 11 causes the output y0, y1, y2, or y3 to be set to 1, respectively. This type of
circuit is called a bin ary decoder. Its inputs represent a binary number, which is decoded
to assert the corresponding output. A circuit symbol and logic circuit for this decoder are
shown in parts (b) and (c) of the figure. Each output is driven by an AND gate that decodes
the corresponding valuation of w1w0.

It is useful to include an en able input, En , in a decoder circuit, as illustrated in Fig-
ure 4.14. When enabled by setting En = 1 the decoder behaves as presented in Figure 4.13.

(b) Graphical symbol(a) Truth table

0
0
1
1

1
0
1

y0w1

0

w0

(c) Logic circuit

w1

w0

0
0
0

1

y1

1
0
0

0

y2

0
1
0

0

y3

0
0
1

0

y0

y1

y2

y3

w0

y0

w1

y1
y2
y3

Figure 4.13 A 2-to-4 decoder.

December 31, 2012 09:12 vra80547_ch04 Sheet number 13 Page number 201 magenta black

4.2 Decoders 201

4.2 Decoders

Consider the logic circuit in Figure 4.13. It has two inputs, w1 and w0, and four outputs,
y0, y1, y2, and y3. As shown in the truth table, only one of the outputs is asserted at a time,
and each output corresponds to one valuation of the inputs. Setting the inputs w1w0 to 00,
01, 10, or 11 causes the output y0, y1, y2, or y3 to be set to 1, respectively. This type of
circuit is called a bin ary decoder. Its inputs represent a binary number, which is decoded
to assert the corresponding output. A circuit symbol and logic circuit for this decoder are
shown in parts (b) and (c) of the figure. Each output is driven by an AND gate that decodes
the corresponding valuation of w1w0.

It is useful to include an en able input, En , in a decoder circuit, as illustrated in Fig-
ure 4.14. When enabled by setting En = 1 the decoder behaves as presented in Figure 4.13.

(b) Graphical symbol(a) Truth table

0
0
1
1

1
0
1

y0w1

0

w0

(c) Logic circuit

w1

w0

0
0
0

1

y1

1
0
0

0

y2

0
1
0

0

y3

0
0
1

0

y0

y1

y2

y3

w0

y0

w1

y1
y2
y3

Figure 4.13 A 2-to-4 decoder.

December 31, 2012 09:12 vra80547_ch04 Sheet number 13 Page number 201 magenta black

4.2 Decoders 201

4.2 Decoders

Consider the logic circuit in Figure 4.13. It has two inputs, w1 and w0, and four outputs,
y0, y1, y2, and y3. As shown in the truth table, only one of the outputs is asserted at a time,
and each output corresponds to one valuation of the inputs. Setting the inputs w1w0 to 00,
01, 10, or 11 causes the output y0, y1, y2, or y3 to be set to 1, respectively. This type of
circuit is called a bin ary decoder. Its inputs represent a binary number, which is decoded
to assert the corresponding output. A circuit symbol and logic circuit for this decoder are
shown in parts (b) and (c) of the figure. Each output is driven by an AND gate that decodes
the corresponding valuation of w1w0.

It is useful to include an en able input, En , in a decoder circuit, as illustrated in Fig-
ure 4.14. When enabled by setting En = 1 the decoder behaves as presented in Figure 4.13.

(b) Graphical symbol(a) Truth table

0
0
1
1

1
0
1

y0w1

0

w0

(c) Logic circuit

w1

w0

0
0
0

1

y1

1
0
0

0

y2

0
1
0

0

y3

0
0
1

0

y0

y1

y2

y3

w0

y0

w1

y1
y2
y3

Figure 4.13 A 2-to-4 decoder.
2



Decodificadores

December 31, 2012 09:12 vra80547_ch04 Sheet number 14 Page number 202 magenta black

202 C H A P T E R 4 • Combinational-Circuit Building Blocks

(b) Graphical symbol(a) Truth table

0
0
1
1

1
0
1

y0w1

0

w0

(c) Logic circuit

w1

w0

x x

1
1

0

1
1

En

0
0
0

1

0

y1

1
0
0

0

0

y2

0
1
0

0

0

y3

0
0
1

0

0

y0

y1

y2

y3

En

w0

En

y0
w1 y1

y2
y3

w0

wn 1–

n
inputs

EnEnable

2n

outputs

y0

y2n 1–

(d) An n-to-2n decoder

Figure 4.14 Binary decoder.

3



figure4.31.v

1 module dec2to4 (W, En, Y);
2 input [1:0]W;
3 input En;
4 output reg [0:3] Y;
5

6 always @(W, En)
7 case ({En,W})
8 3'b100: Y = 4'b1000;
9 3'b101: Y = 4'b0100;

10 3'b110: Y = 4'b0010;
11 3'b111: Y = 4'b0001;
12 default: Y = 4'b0000;
13 endcase
14 endmodule

4



figure4.32.v

1 module dec2to4 (W, En, Y);
2 input [1:0] W;
3 input En;
4 output reg [0:3] Y;
5

6 always @(W, En)
7 begin
8 if (En == 0)
9 Y = 4'b0000;

10 else
11 case (W)
12 0: Y = 4'b1000;
13 1: Y = 4'b0100;
14 2: Y = 4'b0010;
15 3: Y = 4'b0001;
16 endcase
17 end
18 endmodule

5



figure4.37.v

1 module dec2to4 (W, En, Y);
2 input [1:0] W;
3 input En;
4 output reg [0:3] Y;
5 integer k;
6

7 always @(W, En)
8 for (k = 0; k <= 3; k = k+1)
9 if ((W == k) && (En == 1))

10 Y[k] = 1;
11 else
12 Y[k] = 0;
13 endmodule

6



Decodificadores

December 31, 2012 09:12 vra80547_ch04 Sheet number 16 Page number 204 magenta black

204 C H A P T E R 4 • Combinational-Circuit Building Blocks

w2

w0 y0
y1
y2
y3

w0

En

y0
w1 y1

y2
y3

w0

En

y0
w1 y1

y2
y3

y4
y5
y6
y7

w1

En

Figure 4.15 A 3-to-8 decoder using two 2-to-4 decoders.

w0

En

y0
w1 y1

y2
y3

y8
y9
y10
y11

w2

w0 y0
y1
y2
y3

w0

En

y0
w1 y1

y2
y3

w0

En

y0
w1 y1

y2
y3

y4
y5
y6
y7

w1

w0

En

y0
w1 y1

y2
y3

y12
y13
y14
y15

w0

En

y0
w1 y1

y2
y3

w3

En

Figure 4.16 A 4-to-16 decoder built using a decoder tree.

7



Decodificadores

December 31, 2012 09:12 vra80547_ch04 Sheet number 16 Page number 204 magenta black

204 C H A P T E R 4 • Combinational-Circuit Building Blocks

w2

w0 y0
y1
y2
y3

w0

En

y0
w1 y1

y2
y3

w0

En

y0
w1 y1

y2
y3

y4
y5
y6
y7

w1

En

Figure 4.15 A 3-to-8 decoder using two 2-to-4 decoders.

w0

En

y0
w1 y1

y2
y3

y8
y9
y10
y11

w2

w0 y0
y1
y2
y3

w0

En

y0
w1 y1

y2
y3

w0

En

y0
w1 y1

y2
y3

y4
y5
y6
y7

w1

w0

En

y0
w1 y1

y2
y3

y12
y13
y14
y15

w0

En

y0
w1 y1

y2
y3

w3

En

Figure 4.16 A 4-to-16 decoder built using a decoder tree.
8



figure4.33.v

1 module dec4to16 (W, En, Y);
2 input [3:0] W;
3 input En;
4 output [0:15] Y;
5 wire [0:3] M;
6

7 dec2to4 Dec1 (W[3:2], M[0:3], En);
8 dec2to4 Dec2 (W[1:0], Y[0:3], M[0]);
9 dec2to4 Dec3 (W[1:0], Y[4:7], M[1]);

10 dec2to4 Dec4 (W[1:0], Y[8:11], M[2]);
11 dec2to4 Dec5 (W[1:0], Y[12:15], M[3]);
12 endmodule

9



Decodificadores

December 31, 2012 09:12 vra80547_ch04 Sheet number 17 Page number 205 magenta black

4.3 Encoders 205

w1

w0

w0

En

y0
w1 y1

y2
y3

w2

w3

f

s0
s1

1

Figure 4.17 A 4-to-1 multiplexer built using a decoder.

4.3 Encoders

An encoder performs the opposite function of a decoder. It encodes given information into
a more compact form.

4.3.1 Binary Encoders

A bin ary en coder encodes information from 2n inputs into an n -bit code, as indicated in
Figure 4.18. Exactly one of the input signals should have a value of 1, and the outputs
present the binary number that identifies which input is equal to 1. The truth table for a
4-to-2 encoder is provided in Figure 4.19a. Observe that the output y0 is 1 when either
input w1 or w3 is 1, and output y1 is 1 when input w2 or w3 is 1. Hence these outputs can be
generated by the circuit in Figure 4.19b. Note that we assume that the inputs are one-hot
encoded. All input patterns that have multiple inputs set to 1 are not shown in the truth
table, and they are treated as don’t-care conditions.

Encoders are used to reduce the number of bits needed to represent given information.
A practical use of encoders is for transmitting information in a digital system. Encoding
the information allows the transmission link to be built using fewer wires. Encoding is also
useful if information is to be stored for later use because fewer bits need to be stored.

4.3.2 Priority Encoders

Another useful class of encoders is based on the priority of input signals. In a priority
en coder each input has a priority level associated with it. The encoder outputs indicate the
active input that has the highest priority. When an input with a high priority is asserted, the

10



Decodificadores

f (w1,w2,w3) =
∑

m(0, 1, 3, 4, 6, 7)

December 31, 2012 09:12 vra80547_ch04 Sheet number 45 Page number 233 magenta black

4.8 Examples of Solved Problems 233

4.8 Examples of Solved Problems

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

Example 4.24Problem: Implement the function f (w1, w2, w3) = ∑
m(0, 1, 3, 4, 6, 7) by using a 3-to-8

binary decoder and an OR gate.

Solution: The decoder generates a separate output for each minterm of the required function.
These outputs are then combined in the OR gate, giving the circuit in Figure 4.44.

Example 4.25Problem: Derive a circuit that implements an 8-to-3 binary encoder.

Solution: The truth table for the encoder is shown in Figure 4.45. Only those rows for
which a single input variable is equal to 1 are shown; the other rows can be treated as don’t
care cases. From the truth table it is seen that the desired circuit is defined by the equations

y2 = w4 + w5 + w6 + w7

y1 = w2 + w3 + w6 + w7

y0 = w1 + w3 + w5 + w7

Example 4.26Problem: Implement the function

f (w1, w2, w3, w4, w5) = w1w2w4w5 + w1w2 + w1w3 + w1w4 + w3w4w5

by using a 4-to-1 multiplexer and as few other gates as possible. Assume that only the
uncomplemented inputs w1, w2, w3, w4, and w5 are available.

w0

En

y0
w1 y1

y2
y3

y7

y6

y5

y4

w2

f

1

w1

w2

w3

Figure 4.44 Circuit for Example 4.24. 11



Codificadores



Codificadores

December 31, 2012 09:12 vra80547_ch04 Sheet number 18 Page number 206 magenta black

206 C H A P T E R 4 • Combinational-Circuit Building Blocks

2n

inputs

w0

w2n 1–

y0

yn 1–

n
outputs

Figure 4.18 A 2n -to-n binary encoder.

(a) Truth table

0
0
1
1

1
0
1

w3 y1

0

y0

(b) Circuit

w1

w0

0
0
1

0

w2

0
1
0

0

w1

1
0
0

0

w0

0
0
0

1

y0

w2

w3
y1

Figure 4.19 A 4-to-2 binary encoder.

other inputs with lower priority are ignored. The truth table for a 4-to-2 priority encoder is
shown in Figure 4.20. It assumes that w0 has the lowest priority and w3 the highest. The
outputs y1 and y0 represent the binary number that identifies the highest priority input set
to 1. Since it is possible that none of the inputs is equal to 1, an output, z, is provided to
indicate this condition. It is set to 1 when at least one of the inputs is equal to 1. It is set to
0 when all inputs are equal to 0. The outputs y1 and y0 are not meaningful in this case, and
hence the first row of the truth table can be treated as a don’t-care condition for y1 and y0.

12



Codificadores

December 31, 2012 09:12 vra80547_ch04 Sheet number 19 Page number 207 magenta black

4.3 Encoders 207

d
0
0
1

0
1
0

w0 y1

d

y0

1 1

0
1

1

1
1

z

1
x
x

0

x

w1

0
1
x

0

x

w2

0
0
1

0

x

w3

0
0
0

0

1

Figure 4.20 Truth table for a 4-to-2 priority encoder.

The behavior of the priority encoder is most easily understood by first considering
the last row in the truth table. It specifies that if input w3 is 1, then the outputs are set to
y1y0 = 11. Because w3 has the highest priority level, the values of inputs w2, w1, and w0

do not matter. To reflect the fact that their values are irrelevant, w2, w1, and w0 are denoted
by the symbol x in the truth table. The second-last row in the truth table stipulates that
if w2 = 1, then the outputs are set to y1y0 = 10, but only if w3 = 0. Similarly, input w1

causes the outputs to be set to y1y0 = 01 only if both w3 and w2 are 0. Input w0 produces
the outputs y1y0 = 00 only if w0 is the only input that is asserted.

Alogic circuit that implements the truth table can be synthesized by using the techniques
developed in Chapter 2. However, a more convenient way to derive the circuit is to define
a set of intermediate signals, i0, . . . , i3, based on the observations above. Each signal, ik ,
is equal to 1 only if the input with the same index, wk , represents the highest-priority input
that is set to 1. The logic expressions for i0, . . . , i3 are

i0 = w3w2w1w0

i1 = w3w2w1

i2 = w3w2

i3 = w3

Using the intermediate signals, the rest of the circuit for the priority encoder has the same
structure as the binary encoder in Figure 4.19, namely

y0 = i1 + i3
y1 = i2 + i3

The output z is given by

z = i0 + i1 + i2 + i3

13



figure4.36.v

1 module priority (W, Y, z);
2 input [3:0] W;
3 output reg [1:0] Y;
4 output reg z;
5
6 always @(W)
7 begin
8 z = 1;
9 casex (W)

10 4'b1xxx: Y = 3;
11 4'b01xx: Y = 2;
12 4'b001x: Y = 1;
13 4'b0001: Y = 0;
14 default:
15 begin
16 z = 0;
17 Y = 2'bx;
18 end
19 endcase
20 end
21 endmodule

14



figure4.38.v

1 module priority (W, Y, z);
2 input [3:0] W;
3 output reg [1:0] Y;
4 output reg z;
5 integer k;
6

7 always @(W)
8 begin
9 Y = 2'bx;

10 z = 0;
11 for (k = 0; k < 4; k = k+1)
12 if (W[k])
13 begin
14 Y = k;
15 z = 1;
16 end
17 end
18 endmodule

15



Conversores de Códigos



Conversores de Códigos

December 31, 2012 09:12 vra80547_ch04 Sheet number 21 Page number 209 magenta black

4.5 Arithmetic Comparison Circuits 209

ce

1
0
1
1

1
1
1

w0 a

1

b

0 1

1
1

1

0
1

1
0
1

0

0

w1

0
1
1

0

0

w2

0
0
0

0

1

w3

0
0
0

0

0

c

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1001

1
1
1
1

0
1
1

0

1 1

1
1

1

1
1

0
1
1

1

d

0

1
0

0

1
0

e

1
0
1

1

1

0
1

0

0
1

0
0
0

1

f

1

0
0

1

1
1

g

1
0
1

1

1

1
1

1

0
1

(c) Truth table

(a) Code converter

w0

a

w1

b
c
dw2

w3
e
f
g

a

g

bf

d

(b) 7-segment display

1 1 10101
1
0
1
0

1
0
0
1

0
1
1
1

1
1
1
1

1111

0
1
0
1

0
1
0

0

1 0

1
0

0

1
0

0 1

1
1
1

1

0

1
1

1

1
1

1 1

1
0
1

1

1

1
0

1

1
1

Figure 4.21 A hex-to-7-segment display code converter.

The ik signals ensure that only the first bits, considered from the left to the right, of A and
B that differ determine the value of AgtB.

The AltB output can be derived by using the other two outputs as

AltB = AeqB + AgtB

A logic circuit that implements the four-bit comparator circuit is shown in Figure 4.22. This
approach can be used to design a comparator for any value of n .

Comparator circuits, like most logic circuits, can be designed in different ways. Another
approach for designing a comparator circuit is presented in Example 3.9 in Chapter 3.

December 31, 2012 09:12 vra80547_ch04 Sheet number 21 Page number 209 magenta black

4.5 Arithmetic Comparison Circuits 209

ce

1
0
1
1

1
1
1

w0 a

1

b

0 1

1
1

1

0
1

1
0
1

0

0

w1

0
1
1

0

0

w2

0
0
0

0

1

w3

0
0
0

0

0

c

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1001

1
1
1
1

0
1
1

0

1 1

1
1

1

1
1

0
1
1

1

d

0

1
0

0

1
0

e

1
0
1

1

1

0
1

0

0
1

0
0
0

1

f

1

0
0

1

1
1

g

1
0
1

1

1

1
1

1

0
1

(c) Truth table

(a) Code converter

w0

a

w1

b
c
dw2

w3
e
f
g

a

g

bf

d

(b) 7-segment display

1 1 10101
1
0
1
0

1
0
0
1

0
1
1
1

1
1
1
1

1111

0
1
0
1

0
1
0

0

1 0

1
0

0

1
0

0 1

1
1
1

1

0

1
1

1

1
1

1 1

1
0
1

1

1

1
0

1

1
1

Figure 4.21 A hex-to-7-segment display code converter.

The ik signals ensure that only the first bits, considered from the left to the right, of A and
B that differ determine the value of AgtB.

The AltB output can be derived by using the other two outputs as

AltB = AeqB + AgtB

A logic circuit that implements the four-bit comparator circuit is shown in Figure 4.22. This
approach can be used to design a comparator for any value of n .

Comparator circuits, like most logic circuits, can be designed in different ways. Another
approach for designing a comparator circuit is presented in Example 3.9 in Chapter 3.

December 31, 2012 09:12 vra80547_ch04 Sheet number 21 Page number 209 magenta black

4.5 Arithmetic Comparison Circuits 209

ce

1
0
1
1

1
1
1

w0 a

1

b

0 1

1
1

1

0
1

1
0
1

0

0

w1

0
1
1

0

0

w2

0
0
0

0

1

w3

0
0
0

0

0

c

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1001

1
1
1
1

0
1
1

0

1 1

1
1

1

1
1

0
1
1

1

d

0

1
0

0

1
0

e

1
0
1

1

1

0
1

0

0
1

0
0
0

1

f

1

0
0

1

1
1

g

1
0
1

1

1

1
1

1

0
1

(c) Truth table

(a) Code converter

w0

a

w1

b
c
dw2

w3
e
f
g

a

g

bf

d

(b) 7-segment display

1 1 10101
1
0
1
0

1
0
0
1

0
1
1
1

1
1
1
1

1111

0
1
0
1

0
1
0

0

1 0

1
0

0

1
0

0 1

1
1
1

1

0

1
1

1

1
1

1 1

1
0
1

1

1

1
0

1

1
1

Figure 4.21 A hex-to-7-segment display code converter.

The ik signals ensure that only the first bits, considered from the left to the right, of A and
B that differ determine the value of AgtB.

The AltB output can be derived by using the other two outputs as

AltB = AeqB + AgtB

A logic circuit that implements the four-bit comparator circuit is shown in Figure 4.22. This
approach can be used to design a comparator for any value of n .

Comparator circuits, like most logic circuits, can be designed in different ways. Another
approach for designing a comparator circuit is presented in Example 3.9 in Chapter 3.

December 31, 2012 09:12 vra80547_ch04 Sheet number 21 Page number 209 magenta black

4.5 Arithmetic Comparison Circuits 209

ce

1
0
1
1

1
1
1

w0 a

1

b

0 1

1
1

1

0
1

1
0
1

0

0

w1

0
1
1

0

0

w2

0
0
0

0

1

w3

0
0
0

0

0

c

1
0
1
0

0
1
1
0

1
1
1
0

0
0
0
1

1001

1
1
1
1

0
1
1

0

1 1

1
1

1

1
1

0
1
1

1

d

0

1
0

0

1
0

e

1
0
1

1

1

0
1

0

0
1

0
0
0

1

f

1

0
0

1

1
1

g

1
0
1

1

1

1
1

1

0
1

(c) Truth table

(a) Code converter

w0

a

w1

b
c
dw2

w3
e
f
g

a

g

bf

d

(b) 7-segment display

1 1 10101
1
0
1
0

1
0
0
1

0
1
1
1

1
1
1
1

1111

0
1
0
1

0
1
0

0

1 0

1
0

0

1
0

0 1

1
1
1

1

0

1
1

1

1
1

1 1

1
0
1

1

1

1
0

1

1
1

Figure 4.21 A hex-to-7-segment display code converter.

The ik signals ensure that only the first bits, considered from the left to the right, of A and
B that differ determine the value of AgtB.

The AltB output can be derived by using the other two outputs as

AltB = AeqB + AgtB

A logic circuit that implements the four-bit comparator circuit is shown in Figure 4.22. This
approach can be used to design a comparator for any value of n .

Comparator circuits, like most logic circuits, can be designed in different ways. Another
approach for designing a comparator circuit is presented in Example 3.9 in Chapter 3.

16



figure4.34.v

1 module seg7 (hex, leds);
2 input [3:0] hex;
3 output reg [1:7] leds;
4 always @(hex)
5 case (hex) //abcdefg
6 0: leds = 7'b1111110;
7 1: leds = 7'b0110000;
8 2: leds = 7'b1101101;
9 3: leds = 7'b1111001;

10 4: leds = 7'b0110011;
11 5: leds = 7'b1011011;
12 6: leds = 7'b1011111;
13 7: leds = 7'b1110000;
14 8: leds = 7'b1111111;
15 9: leds = 7'b1111011;
16 10: leds = 7'b1110111; // A
17 11: leds = 7'b0011111; // b
18 12: leds = 7'b1001110; // C
19 13: leds = 7'b0111101; // d
20 14: leds = 7'b1001111; // E
21 15: leds = 7'b1000111; // F
22 endcase
23 endmodule

17



Bibliografia



Bibliografia

• Brown, S. & Vranesic, Z. - Fundamentals of Digital Logic with Verilog Design, 3rd
Ed., Mc Graw Hill, 2009

18

https://www.google.com.br/search?q=filetype%3Apdf+Fundamentals+of+Digital+Logic+with+Verilog+Design+&oq=filetype%3Apdf
https://www.google.com.br/search?q=filetype%3Apdf+Fundamentals+of+Digital+Logic+with+Verilog+Design+&oq=filetype%3Apdf


Lógica Digital (1001351)

Circuitos Combinacionais: Conversores de códigos

Prof. Ricardo Menotti
menotti@ufscar.br

Prof. Luciano de Oliveira Neris
lneris@ufscar.br

Atualizado em: 1 de abril de 2024

Departamento de Computação
Centro de Ciências Exatas e de Tecnologia
Universidade Federal de São Carlos

19

mailto:menotti@ufscar.br
mailto:lneris@ufscar.br

	Decodificadores
	Codificadores
	Conversores de Códigos
	Bibliografia

