Lógica Digital (1001351)

Circuitos Sequenciais: Registradores

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Luciano de Oliveira Neris Ineris@ufscar.br

Atualizado em: 1 de abril de 2024

Departamento de Computação Centro de Ciências Exatas e de Tecnologia Universidade Federal de São Carlos

Circuitos Sequenciais

Objetivos

Nesta aula vamos aprender sobre:

- Registradores, os quais armazenam vários bits;
- Registradores de deslocamento;
- Contadores de vários tipos.

Registrador de deslocamento

(b) A sample sequence

Figure 5.17 A simple shift register.

Registrador de deslocamento com carga paralela

Figure 5.18 Parallel-access shift register.

Contador de três bits

Figure 5.19 A three-bit up-counter.

Contador de três bits (decremento)

Figure 5.20 A three-bit down-counter.

Table 5.1 Derivation of the synchronous up-counter.

Clock cycle	$Q_2 Q_1 Q_0$
0 1 2 3 4 5 6 7	Q ₂ Q ₁ Q ₀
8	0 0 0

$$T_0 = 1$$
 $T_1 = Q_0$
 $T_2 = Q_0 Q_1$
 $T_3 = Q_0 Q_1 Q_2$
.
.
.
.
.
.
.
.
.
.
.
.
.

Contador de 4 bits síncrono

Figure 5.21 A four-bit synchronous up-counter.

Contador de 4 bits síncrono com enable

Figure 5.22 Inclusion of Enable and Clear capability.

Usando flip-flops do tipo D

$$D_0 = Q_0 \oplus 1 = \overline{Q}_0$$
 $D_1 = Q_1 \oplus Q_0$
 $D_2 = Q_2 \oplus Q_1 Q_0$
 $D_3 = Q_3 \oplus Q_2 Q_1 Q_0$
.

 $D_i = Q_i \oplus Q_{i-1}Q_{i-2}...Q_1Q_0$

Contador com carga paralela

Figure 5.24 A counter with parallel-load capability.

Contador módulo-6 com reset síncrono

Figure 5.25 A modulo-6 counter with synchronous reset.

Contador módulo-6 com reset assíncrono

Figure 5.26 A modulo-6 counter with asynchronous reset.

Contador BCD de dois dígitos

Figure 5.27 A two-digit BCD counter.

Contador em anel

(a) An n-bit ring counter

(b) A four-bit ring counter

Figure 5.28 Ring counter.

Contador Johnson

Figure 5.29 Johnson counter.

Bibliografia

- Brown, S. & Vranesic, Z. Fundamentals of Digital Logic with Verilog Design, 3rd Ed., Mc Graw Hill, 2009
- https://tams-www.informatik.uni-hamburg.de/applets/hades/

Lógica Digital (1001351)

Circuitos Sequenciais: Registradores

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Luciano de Oliveira Neris Ineris@ufscar.br

Atualizado em: 1 de abril de 2024

Departamento de Computação Centro de Ciências Exatas e de Tecnologia Universidade Federal de São Carlos