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Objetivos

Nesta aula vamos aprender sobre:

• Técnicas de projeto para circuitos que usam flip-flops;

• O conceito de estados e suas implementações com flip-flops;

• Controle síncrono usando um sinal de clock ;

• Comportamento sequencial de circuitos digitais;

• Um procedimento completo para projetar circuitos sequenciais síncronos;

• O conceito de máquina de estados finitos;
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Circuitos Sequenciais Síncronos
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In preceding chapters we considered combinational logic circuits in which outputs are determined fully by
the present values of inputs. We also discussed how simple storage elements can be implemented in the form
of flip-flops. The output of a flip-flop depends on the state of the flip-flop rather than the value of its inputs
at any given time; the inputs cause changes in the state.

In this chapter we deal with a general class of circuits in which the outputs depend on the past behavior
of the circuit, as well as on the present values of inputs. They are called sequential circuits. In most cases
a clock signal is used to control the operation of a sequential circuit; such a circuit is called a synchronous
sequential circuit. The alternative, in which no clock signal is used, is called an asynchronous sequential
circuit. Synchronous circuits are easier to design and are used in a vast majority of practical applications;
they are the topic of this chapter. Asynchronous circuits will be discussed in Chapter 9.

Synchronous sequential circuits are realized using combinational logic and one or more flip-flops. The
general structure of such a circuit is shown in Figure 6.1. The circuit has a set of primary inputs, W , and
produces a set of outputs, Z . The stored values in the flip-flops are referred to as the state, Q, of the circuit.
Under control of the clock signal, the flip-flops change their state as determined by the combinational logic
that feeds the inputs of these flip-flops. Thus the circuit moves from one state to another. To ensure that only
one transition from one state to another takes place during one clock cycle, the flip-flops have to be of the
edge-triggered type. They can be triggered either by the positive (0 to 1 transition) or by the negative (1 to 0
transition) edge of the clock. We will use the term active clock edge to refer to the clock edge that causes the
change in state.

The combinational logic that provides the input signals to the flip-flops has two sources: the primary
inputs, W , and the present (current) state of the flip-flops, Q. Thus changes in state depend on both the present
state and the values of the primary inputs.

Figure 6.1 indicates that the outputs of the sequential circuit are generated by another combinational
circuit, such that the outputs are a function of the present state of the flip-flops and of the primary inputs.
Although the outputs always depend on the present state, they do not necessarily have to depend directly on
the primary inputs. Thus the connection shown in blue in the figure may or may not exist. To distinguish
between these two possibilities, it is customary to say that sequential circuits whose outputs depend only on
the state of the circuit are of Moore type, while those whose outputs depend on both the state and the primary
inputs are of Mealy type. These names are in honor of Edward Moore and George Mealy, who investigated
the behavior of such circuits in the 1950s.

Combinational
circuit

Flip-flops

Clock

Q

W
Z

Combinational
circuit

Figure 6.1 The general form of a sequential circuit.

Edward Moore e George Mealy (1950s)
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Circuitos Sequenciais Síncronos

Considere uma aplicação para controlar a velocidade de um veículo. Um sensor w
indica quando ele está excedendo a velocidade desejada. Se isso ocorrer durante duas
ou mais medidas consecutivas, um sinal z deve ser acionado para reduzir sua
velocidade. Estas são as especificações:

1. O circuito tem uma entrada, w, e uma saída, z ;
2. Todas as mudanças no circuito ocorrem na borda positiva de clock ;
3. A saída z é igual a 1 se a entrada w for 1 durante os dois ciclos consecutivos

anteriores de clock.
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Clockcycle: t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

w : 0 1 0 1 1 0 1 1 1 0 1
z: 0 0 0 0 0 1 0 0 1 1 0

Figure 6.2 Sequences of input and output signals.

this task. The designer must think carefully about what the machine has to accomplish. A
good way to begin is to select one particular state as a starting state; this is the state that the
circuit should enter when power is first turned on or when a reset signal is applied. For our
example let us assume that the starting state is called state A. As long as the input w is 0,
the circuit need not do anything, and so each active clock edge should result in the circuit
remaining in state A. When w becomes equal to 1, the machine should recognize this, and
move to a different state, which we will call state B. This transition takes place on the next
active clock edge after w has become equal to 1. In state B, as in state A, the circuit should
keep the value of output z at 0, because it has not yet seen w = 1 for two consecutive clock
cycles. When in state B, if w is 0 at the next active clock edge, the circuit should move back
to state A. However, if w = 1 when in state B, the circuit should change at the next active
clock edge to a third state, called C, and it should then generate an output z = 1. The circuit
should remain in state C as long as w = 1 and should continue to maintain z = 1. When
w becomes 0, the machine should move back to state A. Since the preceding description
handles all possible values of input w that the machine can encounter in its various states,
we can conclude that three states are needed to implement the desired machine.

Now that we have determined in an informal way the possible transitions between states,
we will describe a more formal procedure that can be used to design the corresponding
sequential circuit. Behavior of a sequential circuit can be described in several different
ways. The conceptually simplest method is to use a pictorial representation in the form
of a state diagram, which is a graph that depicts states of the circuit as nodes (circles)
and transitions between states as directed arcs. The state diagram in Figure 6.3 defines the
behavior that corresponds to our specification. States A, B, and C appear as nodes in the
diagram. Node A represents the starting state, and it is also the state that the circuit will reach
after an input w = 0 is applied. In this state the output z should be 0, which is indicated
as A/z = 0 in the node. The circuit should remain in state A as long as w = 0, which is
indicated by an arc with a label w = 0 that originates and terminates at this node. The first
occurrence of w = 1 (following the condition w = 0) is recorded by moving from state A to
state B. This transition is indicated on the graph by an arc originating at A and terminating
at B. The label w = 1 on this arc denotes the input value that causes the transition. In state
B the output remains at 0, which is indicated as B/z = 0 in the node.

When the circuit is in state B, it will change to state C if w is still equal to 1 at the
next active clock edge. In state C the output z becomes equal to 1. If w stays at 1 during
subsequent clock cycles, the circuit will remain in state C maintaining z = 1. However, if
w becomes 0 when the circuit is either in state B or in state C, the next active clock edge
will cause a transition to state A to take place.
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Diagrama e Tabela de Estados
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C z 1=/

Reset

B z 0=/A z 0=/w 0=

w 1=

w 1=

w 0=

w 0= w 1=

Figure 6.3 State diagram of a simple sequential circuit.

Present Next state Output
state w = 0 w = 1 z

A A B 0
B A C 0
C A C 1

Figure 6.4 State table corresponding to Figure 6.3.

In the diagram we indicated that the Reset input is used to force the circuit into state
A. We could treat Reset as just another input to the circuit, and show a transition from each
state to the starting state A under control of the input Reset. This would complicate the
diagram unnecessarily. Instead, we use a single arrow with the Reset label, as shown in
Figure 6.3, to indicate that the Reset input causes a change to the starting state regardless
of what state the circuit happens to be in.

6.1.2 State Table

Although the state diagram provides a description of the behavior of a sequential circuit
that is easy to understand, to proceed with the implementation of the circuit it is conve-
nient to translate the information contained in the state diagram into a tabular form. Figure
6.4 shows the state table for our sequential circuit. The table indicates all transitions from
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diagram unnecessarily. Instead, we use a single arrow with the Reset label, as shown in
Figure 6.3, to indicate that the Reset input causes a change to the starting state regardless
of what state the circuit happens to be in.
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Forma geral do circuito
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each present state to the next state for different values of the input signal. Note that the
output z is specified with respect to the present state, namely, the state that the circuit is
in at present time. Note also that we did not include the Reset input; instead, we made an
implicit assumption that the first state in the table is the starting state.

We now show the design steps that will produce the final circuit. To explain the basic
design concepts, we first go through a traditional process of manually performing each
design step. This is followed by a discussion of automated design techniques that use
modern computer aided design (CAD) tools.

6.1.3 State Assignment

The state table in Figure 6.4 defines the three states in terms of letters A, B, and C. When
implemented in a logic circuit, each state is represented by a particular valuation (combi-
nation of values) of state variables. Each state variable may be implemented in the form of
a flip-flop. Since three states have to be realized, it is sufficient to use two state variables.
Let these variables be y1 and y2.

Now we can adapt the general block diagram in Figure 6.1 to our example as shown in
Figure 6.5, to indicate the structure of the circuit that implements the required finite state
machine. Two flip-flops represent the state variables. In the figure we have not specified
the type of flip-flops to be used; this issue is addressed in the next subsection. From the
specification in Figures 6.3 and 6.4, the output z is determined only by the present state of
the circuit. Thus the block diagram in Figure 6.5 shows that z is a function of only y1 and
y2; our design is of Moore type. We need to design a combinational circuit that uses y1 and
y2 as input signals and generates a correct output signal z for all possible valuations of these
inputs.

Combinational
circuit

Combinational
circuit

Clock

y2

z

w
y1Y1

Y2

Figure 6.5 A general sequential circuit with input w, output z, and two state flip-flops.
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Tabela de atribuição de estados
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Present Next state

state w = 0 w = 1 Output

y2 y1 Y2Y1 Y2Y1
z

A 00 00 01 0
B 01 00 10 0
C 10 00 10 1

11 dd dd d

Figure 6.6 State-assigned table corresponding to Figure 6.4.

The signals y1 and y2 are also fed back to the combinational circuit that determines
the next state of the FSM. This circuit also uses the primary input signal w. Its outputs are
two signals, Y1 and Y2, which are used to set the state of the flip-flops. Each active edge
of the clock will cause the flip-flops to change their state according to the values of Y1 and
Y2 at that time. Therefore, Y1 and Y2 are called the next-state variables, and y1 and y2 are
called the present-state variables. We need to design a combinational circuit with inputs
w, y1, and y2, such that for all valuations of these inputs the outputs Y1 and Y2 will cause
the machine to move to the next state that satisfies our specification. The next step in the
design process is to create a truth table that defines this circuit, as well as the circuit that
generates z.

To produce the desired truth table, we assign a specific valuation of variables y1 and y2

to each state. One possible assignment is given in Figure 6.6, where the states A, B, and C
are represented by y2y1 = 00, 01, and 10, respectively. The fourth valuation, y2y1 = 11, is
not needed in this case.

The type of table given in Figure 6.6 is usually called a state-assigned table. This table
can serve directly as a truth table for the output z with the inputs y1 and y2. Although for
the next-state functions Y1 and Y2 the table does not have the appearance of a normal truth
table, because there are two separate columns in the table for each value of w, it is obvious
that the table includes all of the information that defines Y1 and Y2 in terms of valuations
of inputs w, y1, and y2.

6.1.4 Choice of Flip-Flops and Derivation of Next-State and
Output Expressions

From the state-assigned table in Figure 6.6, we can derive the logic expressions for the
next-state and output functions. But first we have to decide on the type of flip-flops that
will be used in the circuit. The most straightforward choice is to use D-type flip-flops,
because in this case the values of Y1 and Y2 are simply clocked into the flip-flops to become
the new values of y1 and y2. In other words, if the inputs to the flip-flops are called D1

and D2, then these signals are the same as Y1 and Y2. Note that the diagram in Figure 6.5
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Obtendo as expressões
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Figure 6.7 Derivation of logic expressions for the table in Figure 6.6.

corresponds exactly to this use of D-type flip-flops. For other types of flip-flops, such as
JK type, the relationship between the next-state variable and inputs to a flip-flop is not as
straightforward; we will consider this situation in Section 6.7.

The required logic expressions can be derived as shown in Figure 6.7. We use Karnaugh
maps to make it easy for the reader to verify the validity of the expressions. Recall that
in Figure 6.6 we needed only three of the four possible binary valuations to represent the
states. The fourth valuation, y2y1 = 11, will not occur in the circuit because the circuit is
constrained to move only within states A, B, and C; therefore, we may choose to treat this
valuation as a don’t-care condition. The resulting don’t-care squares in the Karnaugh maps
are denoted by d’s. Using the don’t cares to simplify the expressions, we obtain

Y1 = wy1y2

Y2 = w(y1 + y2)

z = y2

If we do not use don’t cares, then the resulting expressions are slightly more complex; they
are shown in the gray-shaded area of Figure 6.7.

Since D1 = Y1 and D2 = Y2, the logic circuit that corresponds to the preceding expres-
sions is implemented as shown in Figure 6.8. Observe that a clock signal is included, and
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Circuito resultante
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Figure 6.8 Final implementation of the sequential circuit.

the circuit is provided with an active-low reset capability. Connecting the clear input on
the flip-flops to an external Resetn signal, as shown in the figure, provides a simple means
for forcing the circuit into a known state. If we apply the signal Resetn = 0 to the circuit,
then both flip-flops will be cleared to 0, placing the FSM into the state y2y1 = 00.

6.1.5 Timing Diagram

To understand fully the operation of the circuit in Figure 6.8, let us consider its timing
diagram presented in Figure 6.9. The diagram depicts the signal waveforms that correspond
to the sequences of values in Figure 6.2.

Because we are using positive-edge-triggered flip-flops, all changes in the signals occur
shortly after the positive edge of the clock. The amount of delay from the clock edge depends
on the propagation delays through the flip-flops. Note that the input signal w is also shown
to change slightly after the active edge of the clock. This is a good assumption because in
a typical digital system an input such as w would be just an output of another circuit that is
synchronized by the same clock. We discuss the synchronization of input signals with the
clock signal in Chapter 7.
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Simulação
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
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Figure 6.9 Timing diagram for the circuit in Figure 6.8.

A key point to observe is that even though w changes slightly after the active clock
edge, and thus the value of w is equal to 1 (or 0) for almost the entire clock cycle, no change
in the circuit will occur until the beginning of the next clock cycle when the positive edge
causes the flip-flops to change their state. Thus the value of w must be equal to 1 for two
clock cycles if the circuit is to reach state C and generate the output z = 1.

6.1.6 Summary of Design Steps

We can summarize the steps involved in designing a synchronous sequential circuit as
follows:

1. Obtain the specification of the desired circuit.

2. Derive the states for the machine by first selecting a starting state. Then, given the
specification of the circuit, consider all valuations of the inputs to the circuit and
create new states as needed for the machine to respond to these inputs. To keep track
of the states as they are visited, create a state diagram. When completed, the state
diagram shows all states in the machine and gives the conditions under which the
circuit moves from one state to another.

3. Create a state table from the state diagram. Alternatively, it may be convenient to
directly create the state table in step 2, rather than first creating a state diagram.

4. In our sequential circuit example, there were only three states; hence it was a simple
matter to create the state table that does not contain more states than necessary.
However, in practice it is common to deal with circuits that have a large number of
states. In such cases it is unlikely that the first attempt at deriving a state table will
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Figure 6.15 Final implementation of the sequential circuit for Example 6.1.

Present Next state

state w = 0 w = 1 Output

y2 y1 Y2Y1 Y2Y1
z

A 00 00 01 0
B 01 00 11 0
C 11 00 11 1

10 dd dd d

Figure 6.16 Improved state assignment for the state table in
Figure 6.4.

output expressions derived from the figure will be

Y1 = D1 = w

Y2 = D2 = wy1

z = y2
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Figure 6.17 Final circuit for the improved state assignment in Figure 6.16.

These expressions define the circuit shown in Figure 6.17. Comparing this circuit with the
one in Figure 6.8, we see that the cost of the new circuit is lower because it requires fewer
gates.

In general, circuits are much larger than our example, and different state assignments
can have a substantial effect on the cost of the final implementation. While highly desirable,
it is often impossible to find the best state assignment for a large circuit. The exhaustive
approach of trying all possible state assignments is not practical because the number of
available state assignments is huge. CAD tools usually perform the state assignment using
heuristic techniques. These techniques are usually proprietary, and their details are seldom
published.

Example 6.2 In Figure 6.13 we used a straightforward state assignment for the sequential circuit in
Figure 6.12. Consider now the effect of interchanging the valuations assigned to states C
and D, as shown in Figure 6.18. Then the next-state expressions are

Y1 = wy2 + y1y2

Y2 = y1

as derived in Figure 6.19. The output expressions are

R1out = R2in = y1y2

R1in = R3out = Done = y1y2

R2out = R3in = y1y2

These expressions lead to a slightly simpler circuit than the one given in Figure 6.15.

12



Resumo da metodologia

Podemos resumir os passos para se obter um circuito sequencial síncrono da seguinte
forma:

1. Obter a especificação do circuito desejado;

2. Criar uma máquina de estados para o circuito. Partindo de um estado inicial,
derivar os novos estados considerando todas as combinações de entradas possíveis;

3. Criar uma tabela de estados a partir da máquina de estados;

4. Decidir o número de variáveis de estados necessário e atribuir valores a cada um
deles;

5. Derivar as expressões de próximo estado e de saída;

6. Implementar os circuitos de acordo com as expressões.
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