Lógica Digital (1001351)

Circuitos Sequenciais: Máquinas de Estados Finitos

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Luciano de Oliveira Neris Ineris@ufscar.br

Atualizado em: 1 de abril de 2024

Departamento de Computação Centro de Ciências Exatas e de Tecnologia Universidade Federal de São Carlos

Troca de Valores entre Registradores

Figure 6.10 System for Example 6.1.

Máquina de Estados Finitos

Figure 6.11 State diagram for Example 6.1.

Tabela de Estados

Present	Next state		Outputs							
state	w = 0	w = 1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done	
A	A	В	0	0	0	0	0	0	0	
В	C	C	0	0	1	0	0	1	0	
C	D	D	1	0	0	1	0	0	0	
D	Α	A	0	1	0	0	1	0	1	

Figure 6.12 State table for Example 6.1.

Tabela de Atribuição de Estados

	Present	Next state		Outputs								
	state	w = 0	w = 1									
	$y_2 y_1$	Y_2Y_1	Y_2Y_1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done		
A	0 0	0 0	0 1	0	0	0	0	0	0	0		
В	0 1	10	10	0	0	1	0	0	1	0		
C	10	1 1	1 1	1	0	0	1	0	0	0		
D	1 1	0 0	0 0	0	1	0	0	1	0	1		

$$R1_{out} = R2_{in} = \overline{y}_1 y_2$$

 $R1_{in} = R3_{out} = Done = y_1 y_2$
 $R2_{out} = R3_{in} = y_1 \overline{y}_2$

Expressões de próximo estado

$$Y_1 = w \bar{y}_1 + \bar{y}_1 y_2$$

$$Y_2 = y_1 \bar{y}_2 + \bar{y}_1 y_2$$

Figure 6.14 Derivation of next-state expressions for Figure 6.13.

Circuito resultante

Tabela de Atribuição de Estados (alternativa)

	Present	sent Next state										
	state	w = 0	w = 1	Outputs								
	$y_{2}y_{1}$	Y_2Y_1	Y_2Y_1	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done		
A	0 0	0 0	0 1	0	0	0	0	0	0	0		
В	0 1	1 1	1 1	0	0	1	0	0	1	0		
C	1 1	10	10	1	0	0	1	0	0	0		
D	1 0	0 0	0 0	0	1	0	0	1	0	1		

Figure 6.18 Improved state assignment for the state table in Figure 6.12.

Expressões de próximo estado

$$Y_1 = w\bar{y}_2 + y_1\bar{y}_2$$

$$Y_2 = y_1$$

Figure 6.19 Derivation of next-state expressions for Figure 6.18.

One-hot encoding

	Present	Next				
	state	w = 0	w = 1	Output		
	$y_3 y_2 y_1$	$Y_3 Y_2 Y_1$	$Y_3 Y_2 Y_1$	Z		
4	001	0 0 1	010	0		
В	010	0 0 1	100	0		
С	100	0 0 1	100	1		

Figure 6.20 One-hot state assignment for the state table in Figure 6.4.

$$Y_1 = \overline{w}$$

$$Y_2 = wy_1$$

$$Y_3 = w\overline{y}_1$$

$$z = y3$$

One-hot encoding

	Present	Next state		_						
	state	w = 0	w = 1	Outputs						
	$y_4 y_3 y_2 y_1$	$Y_4Y_3Y_2Y_1$	$Y_4Y_3Y_2Y_1$	$R1_{out}$	$R1_{in}$	$R2_{out}$	$R2_{in}$	$R3_{out}$	$R3_{in}$	Done
A	0001	0001	0010	0	0	0	0	0	0	0
В	0010	0100	0100	0	0	1	0	0	1	0
C	0100	1000	$1\ 0\ 0\ 0$	1	0	0	1	0	0	0
D	1000	0001	0001	0	1	0	0	1	0	1

Figure 6.21 One-hot state assignment for the state table in Figure 6.12.

$$Y_1 = \overline{w}y_1 + y_4$$

 $Y_2 = wy_1$
 $Y_3 = y_2$
 $Y_4 = y_3$
 $R1_{out} = R2_{in} = y_3$
 $R1_{in} = R3_{out} = Done = y_4$
 $R2_{out} = R3_{in} = y_2$

Bibliografia

• Brown, S. & Vranesic, Z. - Fundamentals of Digital Logic with Verilog Design, 3rd Ed., Mc Graw Hill, 2009

Lógica Digital (1001351)

Circuitos Sequenciais: Máquinas de Estados Finitos

Prof. Ricardo Menotti menotti@ufscar.br

Prof. Luciano de Oliveira Neris Ineris@ufscar.br

Atualizado em: 1 de abril de 2024

Departamento de Computação Centro de Ciências Exatas e de Tecnologia Universidade Federal de São Carlos