
Lógica Digital (1001351)

Máquinas de Estados Finitos: Minimização

Prof. Ricardo Menotti
menotti@ufscar.br

Prof. Luciano de Oliveira Neris
lneris@ufscar.br

Atualizado em: 1 de abril de 2024

Departamento de Computação
Centro de Ciências Exatas e de Tecnologia
Universidade Federal de São Carlos

1

mailto:menotti@ufscar.br
mailto:lneris@ufscar.br


Definições

Dois estados Si e Sj são ditos equivalentes se e somente se para cada sequência de
entradas possível, a mesma sequência de saída será produzida independente de se partir

de Si ou Sj .

Uma partição consiste em um ou mais blocos, onde cada bloco constitui um
subconjunto de estados que podem ser equivalentes, mas os estados em um dado bloco

são definitivamente não equivalentes aos estados de outro bloco.

2



Particionamento

December 31, 2012 09:13 vra80547_ch06 Sheet number 45 Page number 375 magenta black

6.6 State Minimization 375

Example 6.6Figure 6.51 shows a state table for a particular FSM. In an attempt to minimize the number
of states, let us apply the partitioning procedure. The initial partition contains all states in
a single block

P1 = (ABCDEFG)

The next partition separates the states that have different outputs (note that this FSM is of
Moore type), which means that the states A, B, and D must be different from the states C,
E, F , and G. Thus the new partition has two blocks

P2 = (ABD)(CEFG)

Now we must consider all 0- and 1-successors of the states in each block. For the block
(ABD), the 0-successors are (BDB), respectively. Since all of these successor states are in
the same block in P2, we should still assume that the states A, B, and D may be equivalent.
The 1-successors for these states are (CFG). Since these successors are also in the same
block in P2, we conclude that (ABD) should remain in one block of P3. Next consider the
block (CEFG). Its 0-successors are (FFEF), respectively. They are in the same block in
P2. The 1-successors are (ECDG). Since these states are not in the same block in P2, it
means that at least one of the states in the block (CEFG) is not equivalent to the others. In
particular, the state F must be different from the states C, E, and G because its 1-successor
is D, which is in a different block than C, E, and G. Hence

P3 = (ABD)(CEG)(F)

Repeating the process yields the following. The 0-successors of (ABD) are (BDB), which
are in the same block of P3. The 1-successors are (CFG), which are not in the same block.
Since F is in a different block than C and G, it follows that the state B cannot be equivalent
to states A and D. The 0- and 1-successors of (CEG) are (FFF) and (ECG), respectively.
Both of these subsets are accommodated in the blocks of P3. Therefore

P4 = (AD)(B)(CEG)(F)

Present Next state Output
state w = 0 w = 1 z

A B C 1
B D F 1
C F E 0
D B G 1
E F C 0
F E D 0
G F G 0

Figure 6.51 State table for Example 6.6.

P1 = (ABCDEFG )

P2 = (ABD)(CEFG )

P3 = (ABD)(CEG )(F )

P4 = (AD)(B)(CEG )(F )

P5 = P4

3



Particionamento

December 31, 2012 09:13 vra80547_ch06 Sheet number 45 Page number 375 magenta black

6.6 State Minimization 375

Example 6.6Figure 6.51 shows a state table for a particular FSM. In an attempt to minimize the number
of states, let us apply the partitioning procedure. The initial partition contains all states in
a single block

P1 = (ABCDEFG)

The next partition separates the states that have different outputs (note that this FSM is of
Moore type), which means that the states A, B, and D must be different from the states C,
E, F , and G. Thus the new partition has two blocks

P2 = (ABD)(CEFG)

Now we must consider all 0- and 1-successors of the states in each block. For the block
(ABD), the 0-successors are (BDB), respectively. Since all of these successor states are in
the same block in P2, we should still assume that the states A, B, and D may be equivalent.
The 1-successors for these states are (CFG). Since these successors are also in the same
block in P2, we conclude that (ABD) should remain in one block of P3. Next consider the
block (CEFG). Its 0-successors are (FFEF), respectively. They are in the same block in
P2. The 1-successors are (ECDG). Since these states are not in the same block in P2, it
means that at least one of the states in the block (CEFG) is not equivalent to the others. In
particular, the state F must be different from the states C, E, and G because its 1-successor
is D, which is in a different block than C, E, and G. Hence

P3 = (ABD)(CEG)(F)

Repeating the process yields the following. The 0-successors of (ABD) are (BDB), which
are in the same block of P3. The 1-successors are (CFG), which are not in the same block.
Since F is in a different block than C and G, it follows that the state B cannot be equivalent
to states A and D. The 0- and 1-successors of (CEG) are (FFF) and (ECG), respectively.
Both of these subsets are accommodated in the blocks of P3. Therefore

P4 = (AD)(B)(CEG)(F)

Present Next state Output
state w = 0 w = 1 z

A B C 1
B D F 1
C F E 0
D B G 1
E F C 0
F E D 0
G F G 0

Figure 6.51 State table for Example 6.6.

P1 = (ABCDEFG )

P2 = (ABD)(CEFG )

P3 = (ABD)(CEG )(F )

P4 = (AD)(B)(CEG )(F )

P5 = P4

3



Particionamento

December 31, 2012 09:13 vra80547_ch06 Sheet number 45 Page number 375 magenta black

6.6 State Minimization 375

Example 6.6Figure 6.51 shows a state table for a particular FSM. In an attempt to minimize the number
of states, let us apply the partitioning procedure. The initial partition contains all states in
a single block

P1 = (ABCDEFG)

The next partition separates the states that have different outputs (note that this FSM is of
Moore type), which means that the states A, B, and D must be different from the states C,
E, F , and G. Thus the new partition has two blocks

P2 = (ABD)(CEFG)

Now we must consider all 0- and 1-successors of the states in each block. For the block
(ABD), the 0-successors are (BDB), respectively. Since all of these successor states are in
the same block in P2, we should still assume that the states A, B, and D may be equivalent.
The 1-successors for these states are (CFG). Since these successors are also in the same
block in P2, we conclude that (ABD) should remain in one block of P3. Next consider the
block (CEFG). Its 0-successors are (FFEF), respectively. They are in the same block in
P2. The 1-successors are (ECDG). Since these states are not in the same block in P2, it
means that at least one of the states in the block (CEFG) is not equivalent to the others. In
particular, the state F must be different from the states C, E, and G because its 1-successor
is D, which is in a different block than C, E, and G. Hence

P3 = (ABD)(CEG)(F)

Repeating the process yields the following. The 0-successors of (ABD) are (BDB), which
are in the same block of P3. The 1-successors are (CFG), which are not in the same block.
Since F is in a different block than C and G, it follows that the state B cannot be equivalent
to states A and D. The 0- and 1-successors of (CEG) are (FFF) and (ECG), respectively.
Both of these subsets are accommodated in the blocks of P3. Therefore

P4 = (AD)(B)(CEG)(F)

Present Next state Output
state w = 0 w = 1 z

A B C 1
B D F 1
C F E 0
D B G 1
E F C 0
F E D 0
G F G 0

Figure 6.51 State table for Example 6.6.

P1 = (ABCDEFG )

P2 = (ABD)(CEFG )

P3 = (ABD)(CEG )(F )

P4 = (AD)(B)(CEG )(F )

P5 = P4

3



Particionamento

December 31, 2012 09:13 vra80547_ch06 Sheet number 45 Page number 375 magenta black

6.6 State Minimization 375

Example 6.6Figure 6.51 shows a state table for a particular FSM. In an attempt to minimize the number
of states, let us apply the partitioning procedure. The initial partition contains all states in
a single block

P1 = (ABCDEFG)

The next partition separates the states that have different outputs (note that this FSM is of
Moore type), which means that the states A, B, and D must be different from the states C,
E, F , and G. Thus the new partition has two blocks

P2 = (ABD)(CEFG)

Now we must consider all 0- and 1-successors of the states in each block. For the block
(ABD), the 0-successors are (BDB), respectively. Since all of these successor states are in
the same block in P2, we should still assume that the states A, B, and D may be equivalent.
The 1-successors for these states are (CFG). Since these successors are also in the same
block in P2, we conclude that (ABD) should remain in one block of P3. Next consider the
block (CEFG). Its 0-successors are (FFEF), respectively. They are in the same block in
P2. The 1-successors are (ECDG). Since these states are not in the same block in P2, it
means that at least one of the states in the block (CEFG) is not equivalent to the others. In
particular, the state F must be different from the states C, E, and G because its 1-successor
is D, which is in a different block than C, E, and G. Hence

P3 = (ABD)(CEG)(F)

Repeating the process yields the following. The 0-successors of (ABD) are (BDB), which
are in the same block of P3. The 1-successors are (CFG), which are not in the same block.
Since F is in a different block than C and G, it follows that the state B cannot be equivalent
to states A and D. The 0- and 1-successors of (CEG) are (FFF) and (ECG), respectively.
Both of these subsets are accommodated in the blocks of P3. Therefore

P4 = (AD)(B)(CEG)(F)

Present Next state Output
state w = 0 w = 1 z

A B C 1
B D F 1
C F E 0
D B G 1
E F C 0
F E D 0
G F G 0

Figure 6.51 State table for Example 6.6.

P1 = (ABCDEFG )

P2 = (ABD)(CEFG )

P3 = (ABD)(CEG )(F )

P4 = (AD)(B)(CEG )(F )

P5 = P4

3



Particionamento

December 31, 2012 09:13 vra80547_ch06 Sheet number 45 Page number 375 magenta black

6.6 State Minimization 375

Example 6.6Figure 6.51 shows a state table for a particular FSM. In an attempt to minimize the number
of states, let us apply the partitioning procedure. The initial partition contains all states in
a single block

P1 = (ABCDEFG)

The next partition separates the states that have different outputs (note that this FSM is of
Moore type), which means that the states A, B, and D must be different from the states C,
E, F , and G. Thus the new partition has two blocks

P2 = (ABD)(CEFG)

Now we must consider all 0- and 1-successors of the states in each block. For the block
(ABD), the 0-successors are (BDB), respectively. Since all of these successor states are in
the same block in P2, we should still assume that the states A, B, and D may be equivalent.
The 1-successors for these states are (CFG). Since these successors are also in the same
block in P2, we conclude that (ABD) should remain in one block of P3. Next consider the
block (CEFG). Its 0-successors are (FFEF), respectively. They are in the same block in
P2. The 1-successors are (ECDG). Since these states are not in the same block in P2, it
means that at least one of the states in the block (CEFG) is not equivalent to the others. In
particular, the state F must be different from the states C, E, and G because its 1-successor
is D, which is in a different block than C, E, and G. Hence

P3 = (ABD)(CEG)(F)

Repeating the process yields the following. The 0-successors of (ABD) are (BDB), which
are in the same block of P3. The 1-successors are (CFG), which are not in the same block.
Since F is in a different block than C and G, it follows that the state B cannot be equivalent
to states A and D. The 0- and 1-successors of (CEG) are (FFF) and (ECG), respectively.
Both of these subsets are accommodated in the blocks of P3. Therefore

P4 = (AD)(B)(CEG)(F)

Present Next state Output
state w = 0 w = 1 z

A B C 1
B D F 1
C F E 0
D B G 1
E F C 0
F E D 0
G F G 0

Figure 6.51 State table for Example 6.6.

P1 = (ABCDEFG )

P2 = (ABD)(CEFG )

P3 = (ABD)(CEG )(F )

P4 = (AD)(B)(CEG )(F )

P5 = P4

3



Particionamento

December 31, 2012 09:13 vra80547_ch06 Sheet number 46 Page number 376 magenta black

376 C H A P T E R 6 • Synchronous Sequential Circuits

Present Next state Output
state w = 0 w = 1 z

A B C 1
B A F 1
C F C 0
F C A 0

Figure 6.52 Minimized state table for Example 6.6.

If we follow the same approach to check the 0- and 1-successors of the blocks (AD) and
(CEG), we find that

P5 = (AD)(B)(CEG)(F)

Since P5 = P4 and no new blocks are generated, it follows that states in each block are
equivalent. If the states in some block were not equivalent, then their k-successors would
have to be in different blocks. Therefore, states A and D are equivalent, and C, E, and G
are equivalent. Since each block can be represented by a single state, only four states are
needed to implement the FSM defined by the state table in Figure 6.51. If we let the symbol
A represent both the states A and D in the figure and the symbol C represent the states C,
E, and G, then the state table reduces to the state table in Figure 6.52.

The effect of the minimization is that we have found a solution that requires only two
flip-flops to realize the four states of the minimized state table, instead of needing three
flip-flops for the original design. The expectation is that the FSM with fewer states will be
simpler to implement, although this is not always the case.

The state minimization concept is based on the fact that two different FSMs may exhibit
identical behavior in terms of the outputs produced in response to all possible inputs. Such
machines are functionally equivalent, even though they are implemented with circuits that
may be vastly different. In general, it is not easy to determine whether or not two arbitrary
FSMs are equivalent. Our minimization procedure ensures that a simplified FSM is func-
tionally equivalent to the original one. We encourage the reader to get an intuitive feeling
that the FSMs in Figures 6.51 and 6.52 are indeed functionally equivalent by implementing
both machines and simulating their behavior using the CAD tools.

Example 6.7 As another example of minimization, we will consider the design of a sequential circuit that
could control a vending machine. Suppose that a coin-operated vending machine dispenses
candy under the following conditions:

• The machine accepts nickels and dimes.

• It takes 15 cents for a piece of candy to be released from the machine.

P1 = (ABCDEFG )

P2 = (ABD)(CEFG )

P3 = (ABD)(CEG )(F )

P4 = (AD)(B)(CEG )(F )

P5 = P4

4



Vending machine

December 31, 2012 09:13 vra80547_ch06 Sheet number 47 Page number 377 magenta black

6.6 State Minimization 377

D Q

Q

senseN D Q

QClock

N

senseN

senseD

Clock

N

D

(a) Timing diagram

(b) Circuit that generates N

Figure 6.53 Signals for the vending machine.

• If 20 cents is deposited, the machine will not return the change, but it will credit the
buyer with 5 cents and wait for the buyer to make a second purchase.

All electronic signals in the vending machine are synchronized to the positive edge of a
clock signal, named Clock. The exact frequency of the clock signal is not important for our
example, but we will assume a clock period of 100 ns. The vending machine’s coin-receptor
mechanism generates two signals, senseD and senseN , which are asserted when a dime or
a nickel is detected. Because the coin receptor is a mechanical device and thus very slow
compared to an electronic circuit, inserting a coin causes senseD or senseN to be set to 1 for a
large number of clock cycles. We will assume that the coin receptor also generates two other
signals, named D and N. The D signal is set to 1 for one clock cycle after senseD becomes
1, and N is set to 1 for one clock cycle after senseN becomes 1. The timing relationships
between Clock, senseD, senseN , D, and N are illustrated in Figure 6.53a. The hash marks

5



Vending machine

December 31, 2012 09:13 vra80547_ch06 Sheet number 48 Page number 378 magenta black

378 C H A P T E R 6 • Synchronous Sequential Circuits

S1 0/

S7 1/

DN

D N

S3 0/

S6 0/

S9 1/S8 1/

S2 0/

S5 1/

S4 1/

DNDN

DNDN

DN

DN

DN

D

D N

DN

DN

N

Reset

Figure 6.54 State diagram for Example 6.7.

on the waveforms indicate that senseD or senseN may be 1 for many clock cycles. Also,
there may be an arbitrarily long time between the insertion of two consecutive coins. Note
that since the coin receptor can accept only one coin at a time, it is not possible to have both
D and N set to 1 at once. Figure 6.53b illustrates how the N signal may be generated from
the senseN signal.

Based on these assumptions, we can develop an initial state diagram in a fairly straight-
forward manner, as indicated in Figure 6.54. The inputs to the FSM are D and N, and the
starting state is S1. As long as D = N = 0, the machine remains in state S1, which is
indicated by the arc labeled D · N = 1. Inserting a dime leads to state S2, while inserting a
nickel leads to state S3. In both cases the deposited amount is less than 15 cents, which is
not sufficient to release the candy. This is indicated by the output, z, being equal to 0, as in
S2/0 and S3/0. The machine will remain in state S2 or S3 until another coin is deposited
because D = N = 0. In state S2 a nickel will cause a transition to S4 and a dime to S5.
In both of these states, sufficient money is deposited to activate the output mechanism that
releases the candy; hence the state nodes have the labels S4/1 and S5/1. In S4 the deposited
amount is 15 cents, which means that on the next active clock edge the machine should
return to the reset state S1. The condition D · N on the arc leaving S4 is guaranteed to be
true because the machine remains in state S4 for only 100 ns, which is far too short a time
for a new coin to have been deposited.

6



Particionamento

December 31, 2012 09:13 vra80547_ch06 Sheet number 49 Page number 379 magenta black

6.6 State Minimization 379

Present Next state Output
state D N = 00 01 10 11 z

S1 S1 S3 S2 – 0
S2 S2 S4 S5 – 0
S3 S3 S6 S7 – 0
S4 S1 – – – 1
S5 S3 – – – 1
S6 S6 S8 S9 – 0
S7 S1 – – – 1
S8 S1 – – – 1
S9 S3 – – – 1

Figure 6.55 State table for Example 6.7.

The state S5 denotes that an amount of 20 cents has been deposited. The candy
is released, and on the next clock edge the FSM makes a transition to state S3, which
represents a credit of 5 cents. A similar reasoning when the machine is in state S3 leads to
states S6 through S9. This completes the state diagram for the desired FSM. A state table
version of the same information is given in Figure 6.55.

Note that the condition D = N = 1 is denoted as don’t care in the table. Note also
other don’t cares in states S4, S5, S7, S8, and S9. They correspond to cases where there is
no need to check the D and N signals because the machine changes to another state in an
amount of time that is too short for a new coin to have been inserted.

Using the minimization procedure, we obtain the following partitions

P1 = (S1, S2, S3, S4, S5, S6, S7, S8, S9)

P2 = (S1, S2, S3, S6)(S4, S5, S7, S8, S9)

P3 = (S1)(S3)(S2, S6)(S4, S5, S7, S8, S9)

P4 = (S1)(S3)(S2, S6)(S4, S7, S8)(S5, S9)

P5 = (S1)(S3)(S2, S6)(S4, S7, S8)(S5, S9)

The final partition has five blocks. Let S2 denote its equivalence to S6, let S4 denote the
same with respect to S7 and S8, and let S5 represent S9. This leads to the minimized
state table in Figure 6.56. The actual circuit that implements this table can be designed as
explained in the previous sections.

In this example we used a straightforward approach to derive the original state dia-
gram, which we then minimized using the partitioning procedure. Figure 6.57 presents
the information in the state table of Figure 6.56 in the form of a state diagram. Looking
at this diagram, the reader can probably see that it may have been quite feasible to derive
the optimized diagram directly, using the following reasoning. Suppose that the states cor-
respond to the various amounts of money deposited. In particular, the states, S1, S3, S2,

P1 = (S1, S2, S3, S4,S5, S6,S7, S8, S9)

P2 = (S1, S2, S3, S6)(S4, S5, S7, S8,S9)

P3 = (S1)(S3)(S2,S6)(S4,S5, S7,S8, S9)

P4 = (S1)(S3)(S2,S6)(S4,S7, S8)(S5, S9)

P5 = P4

7



Particionamento

December 31, 2012 09:13 vra80547_ch06 Sheet number 50 Page number 380 magenta black

380 C H A P T E R 6 • Synchronous Sequential Circuits

Present Next state Output
state DN = 00 01 10 11 z

S1 S1 S3 S2 0
S2 S2 S4 S5 0
S3 S3 S2 S4 0
S4 S1 1
S5 S3 1

Figure 6.56 Minimized state table for Example 6.7.

S3 0/

S2 0/

S4 1/

S1 0/

S5 1/

DNDN

DN

DN

DN

D

D

D

N

N

N

Figure 6.57 Minimized state diagram for Example 6.7.

S4, and S5 correspond to the amounts of 0, 5, 10, 15, and 20 cents, respectively. With
this interpretation of the states, it is not difficult to derive the transition arcs that define the
desired FSM. In practice, the designer can often produce initial designs that do not have a
large number of superfluous states.

We have found a solution that requires five states, which is the minimum number of
states for a Moore-type FSM that realizes the desired vending control task. From Sec-
tion 6.3 we know that Mealy-type FSMs may need fewer states than Moore-type machines,

P1 = (S1, S2, S3, S4,S5, S6,S7, S8, S9)

P2 = (S1, S2, S3, S6)(S4, S5, S7, S8,S9)

P3 = (S1)(S3)(S2,S6)(S4,S5, S7,S8, S9)

P4 = (S1)(S3)(S2,S6)(S4,S7, S8)(S5, S9)

P5 = P4

8



Moore vs Mealy

December 31, 2012 09:13 vra80547_ch06 Sheet number 50 Page number 380 magenta black

380 C H A P T E R 6 • Synchronous Sequential Circuits

Present Next state Output
state DN = 00 01 10 11 z

S1 S1 S3 S2 0
S2 S2 S4 S5 0
S3 S3 S2 S4 0
S4 S1 1
S5 S3 1

Figure 6.56 Minimized state table for Example 6.7.

S3 0/

S2 0/

S4 1/

S1 0/

S5 1/

DNDN

DN

DN

DN

D

D

D

N

N

N

Figure 6.57 Minimized state diagram for Example 6.7.

S4, and S5 correspond to the amounts of 0, 5, 10, 15, and 20 cents, respectively. With
this interpretation of the states, it is not difficult to derive the transition arcs that define the
desired FSM. In practice, the designer can often produce initial designs that do not have a
large number of superfluous states.

We have found a solution that requires five states, which is the minimum number of
states for a Moore-type FSM that realizes the desired vending control task. From Sec-
tion 6.3 we know that Mealy-type FSMs may need fewer states than Moore-type machines,

9



Moore vs Mealy

December 31, 2012 09:13 vra80547_ch06 Sheet number 50 Page number 380 magenta black

380 C H A P T E R 6 • Synchronous Sequential Circuits

Present Next state Output
state DN = 00 01 10 11 z

S1 S1 S3 S2 0
S2 S2 S4 S5 0
S3 S3 S2 S4 0
S4 S1 1
S5 S3 1

Figure 6.56 Minimized state table for Example 6.7.

S3 0/

S2 0/

S4 1/

S1 0/

S5 1/

DNDN

DN

DN

DN

D

D

D

N

N

N

Figure 6.57 Minimized state diagram for Example 6.7.

S4, and S5 correspond to the amounts of 0, 5, 10, 15, and 20 cents, respectively. With
this interpretation of the states, it is not difficult to derive the transition arcs that define the
desired FSM. In practice, the designer can often produce initial designs that do not have a
large number of superfluous states.

We have found a solution that requires five states, which is the minimum number of
states for a Moore-type FSM that realizes the desired vending control task. From Sec-
tion 6.3 we know that Mealy-type FSMs may need fewer states than Moore-type machines,

December 31, 2012 09:13 vra80547_ch06 Sheet number 51 Page number 381 magenta black

6.6 State Minimization 381

S3

S2

D 0/

S1

D 1/

D 1/

N 1/

N 0/

N 0/

DN 0/

DN 0/

DN 0/

Figure 6.58 Mealy-type FSM for Example 6.7.

although they do not necessarily lead to simpler overall implementations. If we use the
Mealy model, we can eliminate states S4 and S5 in Figure 6.57. The result is shown in
Figure 6.58. This version requires only three states, but the output functions become more
complicated. The reader is encouraged to compare the complexity of implementations by
completing the design steps for the FSMs in Figures 6.57 and 6.58.

6.6.2 Incompletely Specified FSMs

The partitioning scheme for minimization of states works well when all entries in the state
table are specified. Such is the case for the FSM defined in Figure 6.51. FSMs of this
type are said to be completely specified. If one or more entries in the state table are not
specified, corresponding to don’t-care conditions, then the FSM is said to be incompletely
specified. An example of such an FSM is given in Figure 6.55. As seen in Example 6.7, the
partitioning scheme works well for this FSM also. But in general, the partitioning scheme is
less useful when incompletely specified FSMs are involved, as illustrated by Example 6.8.

Example 6.8Consider the FSM in Figure 6.59 which has four unspecified entries, because we have as-
sumed that the input w = 1 will not occur when the machine is in states B or G. Accordingly,

9



Particionamento de máquinas incompletas

December 31, 2012 09:13 vra80547_ch06 Sheet number 52 Page number 382 magenta black

382 C H A P T E R 6 • Synchronous Sequential Circuits

Present Next state Output z
state w = 0 w = 1 w = 0 w = 1

A B C 0 0
B D 0
C F E 0 1
D B G 0 0
E F C 0 1
F E D 0 1
G F 0

Figure 6.59 Incompletely specified state table for Example 6.8.

neither a state transition nor an output value is specified for these two cases. An important
difference between this FSM and the one in Figure 6.55 is that some outputs in this FSM
are unspecified, whereas in the other FSM all outputs are specified.

The partitioning minimization procedure can be applied to Mealy-type FSMs in the
same way as for Moore-type FSMs illustrated in Examples 6.6 and 6.7. Two states are
considered equivalent, and are thus placed in the same block of a partition, if their outputs
are equal for all corresponding input valuations. To perform the partitioning process, we
can assume that the unspecified outputs have a specific value. Not knowing whether these
values should be 0 or 1, let us first assume that both unspecified outputs have a value of 0.
Then the first two partitions are

P1 = (ABCDEFG)

P2 = (ABDG)(CEF)

Note that the states A, B, D, and G are in the same block because their outputs are equal to 0
for both w = 0 and w = 1. Also, the states C, E, and F are in one block because they have
the same output behavior; they all generate z = 0 if w = 0, and z = 1 if w = 1. Continuing
the partitioning procedure gives the remaining partitions

P3 = (AB)(D)(G)(CE)(F)

P4 = (A)(B)(D)(G)(CE)(F)

P5 = P4

The result is an FSM that is specified by six states.
Next consider the alternative of assuming that both unspecified outputs in Figure 6.59

have a value of 1. This would lead to the partitions

P1 = (ABCDEFG)

P2 = (ABDG)(CEF )

P3 = (AB)(D)(G)(CE)(F )

P4 = (A)(B)(D)(G)(CE)(F )

P5 = P4

P1 = (ABCDEFG)

P2 = (AD)(BCEFG)

P3 = (AD)(B)(CEFG)

P4 = (AD)(B)(CEG)(F )

P5 = P4

10



Particionamento de máquinas incompletas

December 31, 2012 09:13 vra80547_ch06 Sheet number 52 Page number 382 magenta black

382 C H A P T E R 6 • Synchronous Sequential Circuits

Present Next state Output z
state w = 0 w = 1 w = 0 w = 1

A B C 0 0
B D 0
C F E 0 1
D B G 0 0
E F C 0 1
F E D 0 1
G F 0

Figure 6.59 Incompletely specified state table for Example 6.8.

neither a state transition nor an output value is specified for these two cases. An important
difference between this FSM and the one in Figure 6.55 is that some outputs in this FSM
are unspecified, whereas in the other FSM all outputs are specified.

The partitioning minimization procedure can be applied to Mealy-type FSMs in the
same way as for Moore-type FSMs illustrated in Examples 6.6 and 6.7. Two states are
considered equivalent, and are thus placed in the same block of a partition, if their outputs
are equal for all corresponding input valuations. To perform the partitioning process, we
can assume that the unspecified outputs have a specific value. Not knowing whether these
values should be 0 or 1, let us first assume that both unspecified outputs have a value of 0.
Then the first two partitions are

P1 = (ABCDEFG)

P2 = (ABDG)(CEF)

Note that the states A, B, D, and G are in the same block because their outputs are equal to 0
for both w = 0 and w = 1. Also, the states C, E, and F are in one block because they have
the same output behavior; they all generate z = 0 if w = 0, and z = 1 if w = 1. Continuing
the partitioning procedure gives the remaining partitions

P3 = (AB)(D)(G)(CE)(F)

P4 = (A)(B)(D)(G)(CE)(F)

P5 = P4

The result is an FSM that is specified by six states.
Next consider the alternative of assuming that both unspecified outputs in Figure 6.59

have a value of 1. This would lead to the partitions

P1 = (ABCDEFG)

P2 = (ABDG)(CEF )

P3 = (AB)(D)(G)(CE)(F )

P4 = (A)(B)(D)(G)(CE)(F )

P5 = P4

P1 = (ABCDEFG)

P2 = (AD)(BCEFG)

P3 = (AD)(B)(CEFG)

P4 = (AD)(B)(CEG)(F )

P5 = P4

10



Bibliografia

• Brown, S. & Vranesic, Z. - Fundamentals of Digital Logic with Verilog Design, 3rd
Ed., Mc Graw Hill, 2009

11

https://www.google.com.br/search?q=filetype%3Apdf+Fundamentals+of+Digital+Logic+with+Verilog+Design+&oq=filetype%3Apdf
https://www.google.com.br/search?q=filetype%3Apdf+Fundamentals+of+Digital+Logic+with+Verilog+Design+&oq=filetype%3Apdf


Lógica Digital (1001351)

Máquinas de Estados Finitos: Minimização

Prof. Ricardo Menotti
menotti@ufscar.br

Prof. Luciano de Oliveira Neris
lneris@ufscar.br

Atualizado em: 1 de abril de 2024

Departamento de Computação
Centro de Ciências Exatas e de Tecnologia
Universidade Federal de São Carlos

12

mailto:menotti@ufscar.br
mailto:lneris@ufscar.br

