
Microprocessadores e Microcontroladores (27146)

Conjunto de instruções (ARM)

Prof. Ricardo Menotti (menotti@ufscar.br)

Atualizado em: 26 de abril de 2021

Departamento de Computação

Centro de Ciências Exatas e de Tecnologia

Universidade Federal de São Carlos

1

mailto:menotti@ufscar.br

Sobre a arquitetura ARM

• Desenvolvida na década de 80 pela Advanced RISC Machines Ltd.

• Mais de 10 bilhões de processadores vendidos todos os anos (2016);

• ARM não vende processadores diretamente, mas licencia para outros fabricantes;

2

Particularidade

• A maioria dos conjuntos de instruções só permite que saltos sejam executados

condicionalmente;

• Os processadores ARM possuem um mecanismo de execução condicional de
instruções:

• Todas as instruções contém um campo de condição, indicando as circunstâncias de

execução;

• Reusando o hardware de comparação, aumenta-se efetivamente o número de

instruções;

• Isso elimina a necessidade de muitos saltos;

• Os processadores ARM possuem uma unidade de deslocamento (Barrel Shifter)
para o segundo operando da ULA:

• Se o fator for um imediato, a operação não adiciona nenhum ciclo à instrução;

• Isso pode ser usado, por exemplo, para escalar endereços;

3

Endereçamento

which we discuss further in Section 6.3.6. The LDR instruction specifies the
memory address using a base register (R5) and an offset (8). Recall that
each data word is 4 bytes, so word number 1 is at address 4, word number
2 is at address 8, and so on. The word address is four times the word num-
ber. The memory address is formed by adding the contents of the base reg-
ister (R5) and the offset. ARM offers several modes for accessing memory,
as will be discussed in Section 6.3.6.

After the load register instruction (LDR) is executed inCode Example 6.8,
R7 holds the value 0x01EE2842, which is the data value stored at memory
address 8 in Figure 6.1.

ARM uses the store register instruction, STR, to write a data word
from a register into memory. Code Example 6.9 writes the value 42 from
register R9 into memory word 5.

Byte-addressable memories are organized in a big-endian or little-
endian fashion, as shown in Figure 6.2. In both formats, a 32-bit word’s
most significant byte (MSB) is on the left and the least significant byte
(LSB) is on the right. Word addresses are the same in both formats and
refer to the same four bytes. Only the addresses of bytes within a word

Word address Data

0000000C

00000008

00000004

00000000

Width = 4 bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

Word 3

Word 2

Word 1

Word 0

Byte address

MSB

F E D C

B A 9 8
7 6 5 4

3 2 1 0

C D 1 9 A 6 5 B13 12 11 10 00000010 Word 4

LSB

Word number

(b)(a)

Figure 6.1 ARM byte-addressable
memory showing: (a) byte address
and (b) data

Code Example 6.8 READING MEMORY

High-Level Code

a = mem[2];

ARM Assembly Code

; R7 = a
MOV R5, #0 ; base address = 0
LDR R7, [R5, #8] ; R7 <= data at memory address (R5+8)

ARMv4 requires word-aligned
addresses for LDR and STR, that
is, a word address that is divisible
by four. Since ARMv6, this
alignment restriction can be
removed by setting a bit in the
ARM system control register,
but performance of unaligned
loads is usually worse. Some
architectures, such as x86, allow
non-word-aligned data reads and
writes, but others, such as MIPS,
require strict alignment for
simplicity. Of course, byte
addresses for load byte and
store byte, LDRB and STRB
(discussed in Section 6.3.6), need
not be word aligned.

A read from the base address
(i.e., index 0) is a special case
that requires no offset in the
assembly code. For example, a
memory read from the base
address held in R5 is written
as LDR R3, [R5].

Code Example 6.9 WRITING MEMORY

High-Level Code

mem[5] = 42;

ARM Assembly Code

MOV R1, #0 ; base address = 0
MOV R9, #42
STR R9, [R1, #0x14] ; value stored at memory address (R1+20) = 42

302 CHAPTER SIX Architecture

4

Registadores [Harris and Harris(2016)]

Example 6.1 TRANSLATING HIGH-LEVEL CODE TO ASSEMBLY
LANGUAGE

Translate the following high-level code into ARM assembly language. Assume
variables a–c are held in registers R0–R2 and f–j are in R3–R7.

a = b − c;
f = (g + h) − (i + j);

Solution: The program uses four assembly language instructions.

; ARM assembly code
; R0 = a, R1 = b, R2 = c, R3 = f, R4 = g, R5 = h, R6 = i, R7 = j

SUB R0, R1, R2 ; a = b − c
ADD R8, R4, R5 ; R8 = g + h
ADD R9, R6, R7 ; R9 = i + j
SUB R3, R8, R9 ; f = (g + h) − (i + j)

The Register Set
Table 6.1 lists the name and use for each of the 16 ARM registers. R0–R12
are used for storing variables; R0–R3 also have special uses during proce-
dure calls. R13–R15 are also called SP, LR, and PC, and they will be
described later in this chapter.

Constants/Immediates
In addition to register operations, ARM instructions can use constant or
immediate operands. These constants are called immediates, because their
values are immediately available from the instruction and do not require a
register or memory access. Code Example 6.6 shows the ADD instruction
adding an immediate to a register. In assembly code, the immediate is pre-
ceded by the # symbol and can be written in decimal or hexadecimal.
Hexadecimal constants in ARM assembly language start with 0x, as they

Table 6.1 ARM register set

Name Use

R0 Argument / return value / temporary variable

R1–R3 Argument / temporary variables

R4–R11 Saved variables

R12 Temporary variable

R13 (SP) Stack Pointer

R14 (LR) Link Register

R15 (PC) Program Counter

300 CHAPTER SIX Architecture

5

Sintaxe [Harris and Harris(2016)]

which we discuss further in Section 6.3.6. The LDR instruction specifies the
memory address using a base register (R5) and an offset (8). Recall that
each data word is 4 bytes, so word number 1 is at address 4, word number
2 is at address 8, and so on. The word address is four times the word num-
ber. The memory address is formed by adding the contents of the base reg-
ister (R5) and the offset. ARM offers several modes for accessing memory,
as will be discussed in Section 6.3.6.

After the load register instruction (LDR) is executed inCode Example 6.8,
R7 holds the value 0x01EE2842, which is the data value stored at memory
address 8 in Figure 6.1.

ARM uses the store register instruction, STR, to write a data word
from a register into memory. Code Example 6.9 writes the value 42 from
register R9 into memory word 5.

Byte-addressable memories are organized in a big-endian or little-
endian fashion, as shown in Figure 6.2. In both formats, a 32-bit word’s
most significant byte (MSB) is on the left and the least significant byte
(LSB) is on the right. Word addresses are the same in both formats and
refer to the same four bytes. Only the addresses of bytes within a word

Word address Data

0000000C

00000008

00000004

00000000

Width = 4 bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

Word 3

Word 2

Word 1

Word 0

Byte address

MSB

F E D C

B A 9 8
7 6 5 4

3 2 1 0

C D 1 9 A 6 5 B13 12 11 10 00000010 Word 4

LSB

Word number

(b)(a)

Figure 6.1 ARM byte-addressable
memory showing: (a) byte address
and (b) data

Code Example 6.8 READING MEMORY

High-Level Code

a = mem[2];

ARM Assembly Code

; R7 = a
MOV R5, #0 ; base address = 0
LDR R7, [R5, #8] ; R7 <= data at memory address (R5+8)

ARMv4 requires word-aligned
addresses for LDR and STR, that
is, a word address that is divisible
by four. Since ARMv6, this
alignment restriction can be
removed by setting a bit in the
ARM system control register,
but performance of unaligned
loads is usually worse. Some
architectures, such as x86, allow
non-word-aligned data reads and
writes, but others, such as MIPS,
require strict alignment for
simplicity. Of course, byte
addresses for load byte and
store byte, LDRB and STRB
(discussed in Section 6.3.6), need
not be word aligned.

A read from the base address
(i.e., index 0) is a special case
that requires no offset in the
assembly code. For example, a
memory read from the base
address held in R5 is written
as LDR R3, [R5].

Code Example 6.9 WRITING MEMORY

High-Level Code

mem[5] = 42;

ARM Assembly Code

MOV R1, #0 ; base address = 0
MOV R9, #42
STR R9, [R1, #0x14] ; value stored at memory address (R1+20) = 42

302 CHAPTER SIX Architecture

which we discuss further in Section 6.3.6. The LDR instruction specifies the
memory address using a base register (R5) and an offset (8). Recall that
each data word is 4 bytes, so word number 1 is at address 4, word number
2 is at address 8, and so on. The word address is four times the word num-
ber. The memory address is formed by adding the contents of the base reg-
ister (R5) and the offset. ARM offers several modes for accessing memory,
as will be discussed in Section 6.3.6.

After the load register instruction (LDR) is executed inCode Example 6.8,
R7 holds the value 0x01EE2842, which is the data value stored at memory
address 8 in Figure 6.1.

ARM uses the store register instruction, STR, to write a data word
from a register into memory. Code Example 6.9 writes the value 42 from
register R9 into memory word 5.

Byte-addressable memories are organized in a big-endian or little-
endian fashion, as shown in Figure 6.2. In both formats, a 32-bit word’s
most significant byte (MSB) is on the left and the least significant byte
(LSB) is on the right. Word addresses are the same in both formats and
refer to the same four bytes. Only the addresses of bytes within a word

Word address Data

0000000C

00000008

00000004

00000000

Width = 4 bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

Word 3

Word 2

Word 1

Word 0

Byte address

MSB

F E D C

B A 9 8
7 6 5 4

3 2 1 0

C D 1 9 A 6 5 B13 12 11 10 00000010 Word 4

LSB

Word number

(b)(a)

Figure 6.1 ARM byte-addressable
memory showing: (a) byte address
and (b) data

Code Example 6.8 READING MEMORY

High-Level Code

a = mem[2];

ARM Assembly Code

; R7 = a
MOV R5, #0 ; base address = 0
LDR R7, [R5, #8] ; R7 <= data at memory address (R5+8)

ARMv4 requires word-aligned
addresses for LDR and STR, that
is, a word address that is divisible
by four. Since ARMv6, this
alignment restriction can be
removed by setting a bit in the
ARM system control register,
but performance of unaligned
loads is usually worse. Some
architectures, such as x86, allow
non-word-aligned data reads and
writes, but others, such as MIPS,
require strict alignment for
simplicity. Of course, byte
addresses for load byte and
store byte, LDRB and STRB
(discussed in Section 6.3.6), need
not be word aligned.

A read from the base address
(i.e., index 0) is a special case
that requires no offset in the
assembly code. For example, a
memory read from the base
address held in R5 is written
as LDR R3, [R5].

Code Example 6.9 WRITING MEMORY

High-Level Code

mem[5] = 42;

ARM Assembly Code

MOV R1, #0 ; base address = 0
MOV R9, #42
STR R9, [R1, #0x14] ; value stored at memory address (R1+20) = 42

302 CHAPTER SIX Architecture

6

Operações Lógicas [Harris and Harris(2016)]

to a destination register. The first source is always a register and the
second source is either an immediate or another register. Another logical
operation, MVN (MoVe and Not), performs a bitwise NOT on the second
source (an immediate or register) and writes the result to the destination
register. Figure 6.3 shows examples of these operations on the two source
values 0x46A1F1B7 and 0xFFFF0000. The figure shows the values stored
in the destination register after the instruction executes.

The bit clear (BIC) instruction is useful for masking bits (i.e., forcing
unwanted bits to 0). BIC R6, R1, R2 computes R1 AND NOT R2. In
other words, BIC clears the bits that are asserted in R2. In this case, the
top two bytes of R1 are cleared or masked, and the unmasked bottom
two bytes of R1, 0xF1B7, are placed in R6. Any subset of register bits
can be masked.

The ORR instruction is useful for combining bitfields from two regis-
ters. For example, 0x347A0000 ORR 0x000072FC = 0x347A72FC.

Shift Instructions
Shift instructions shift the value in a register left or right, dropping bits off
the end. The rotate instruction rotates the value in a register right by up to
31 bits. We refer to both shift and rotate generically as shift operations.
ARM shift operations are LSL (logical shift left), LSR (logical shift right),
ASR (arithmetic shift right), and ROR (rotate right). There is no ROL
instruction because left rotation can be performed with a right rotation
by a complementary amount.

As discussed in Section 5.2.5, left shifts always fill the least significant
bits with 0’s. However, right shifts can be either logical (0’s shift into the
most significant bits) or arithmetic (the sign bit shifts into the most signifi-
cant bits). The amount by which to shift can be an immediate or a register.

Figure 6.4 shows the assembly code and resulting register values for LSL,
LSR, ASR, and ROR when shifting by an immediate value. R5 is shifted by the
immediate amount, and the result is placed in the destination register.

R1

Source registers

ResultAssembly code

R2

R3

R4

R5

R6

R7

AND R2

ORR

EOR

BIC

MVN

1111 1111 1111 1111

1111 1111 1111 1111

0000 0000 0000 0000

0100 0110 1010 0001 1111 0001 1011 0111

1011 0111

1011 0111

1011 0111

0100 0110 1010 0001

1111 1111 1111 1111 1111 0001

1011 1001 0101 1110 1111 0001

1111 00010000 0000

0000 0000 0000 0000

0000 0000

0000 0000 0000 0000

R2

R2

R2

R1,

R1,

R1,

R1,

R2

R3,

R4,

R5,

R6,

R7,

Figure 6.3 Logical operations

304 CHAPTER SIX Architecture

7

Deslocamentos [Harris and Harris(2016)]

Shifting a value left byN is equivalent tomultiplying it by 2N. Likewise, arith-
metically shifting a value right by N is equivalent to dividing it by 2N, as
discussed in Section 5.2.5. Logical shifts are also used to extract or assemble
bitfields.

Figure 6.5 shows the assembly code and resulting register values for
shift operations where the shift amount is held in a register, R6. This
instruction uses the register-shifted register addressing mode, where one
register (R8) is shifted by the amount (20) held in a second register (R6).

Multiply Instructions*
Multiplication is somewhat different from other arithmetic operations.
Multiplying two 32-bit numbers produces a 64-bit product. The ARM
architecture provides multiply instructions that result in a 32-bit or
64-bit product. Multiply (MUL) multiplies two 32-bit numbers and pro-
duces a 32-bit result. MUL R1, R2, R3 multiplies the values in R2 and
R3 and places the least significant bits of the product in R1; the most
significant 32 bits of the product are discarded. This instruction is useful
for multiplying small numbers whose result fits in 32 bits. UMULL
(unsigned multiply long) and SMULL (signed multiply long) multiply
two 32-bit numbers and produce a 64-bit product. For example, UMULL
R1, R2, R3, R4 performs an unsigned multiply of R3 and R4. The least
significant 32 bits of the product is placed in R1 and the most signifi-
cant 32 bits are placed in R2.

R5

Source register

ResultAssembly Code

LSL R0, R5, #7

LSR R1, R5, #17

ASR R2, R5, #3

ROR R3, R5, #21

1111 1111 0001 1100 0001 0000 1110 0111

1000 1110 0000 1000 0111 0011 1000 0000

0000 0000 0111 1111 1000 1110

1111 1111 1110 0011 1000 0010 0001 1100

1110 0000 1000 0111 0011 1111 1111 1000

R0

R1

R2

R3

0000 0000

Figure 6.4 Shift instructions with
immediate shift amounts

R8

Source registers

ResultAssembly code

LSL R4, R8, R6

ROR R5, R8, R6

0000 1000 0001 1100 0001 0110 1110 0111

0110 1110 0111 0000 0000 0000 0000 0000

1000 0001

R4

R5

R6 0000 0000 0000 0000 0000 0000 0001 0100

0111 00000110 11101100 0001

Figure 6.5 Shift instructions with
register shift amounts

6.3 Programming 305

8

Deslocamentos [Harris and Harris(2016)]

Shifting a value left byN is equivalent tomultiplying it by 2N. Likewise, arith-
metically shifting a value right by N is equivalent to dividing it by 2N, as
discussed in Section 5.2.5. Logical shifts are also used to extract or assemble
bitfields.

Figure 6.5 shows the assembly code and resulting register values for
shift operations where the shift amount is held in a register, R6. This
instruction uses the register-shifted register addressing mode, where one
register (R8) is shifted by the amount (20) held in a second register (R6).

Multiply Instructions*
Multiplication is somewhat different from other arithmetic operations.
Multiplying two 32-bit numbers produces a 64-bit product. The ARM
architecture provides multiply instructions that result in a 32-bit or
64-bit product. Multiply (MUL) multiplies two 32-bit numbers and pro-
duces a 32-bit result. MUL R1, R2, R3 multiplies the values in R2 and
R3 and places the least significant bits of the product in R1; the most
significant 32 bits of the product are discarded. This instruction is useful
for multiplying small numbers whose result fits in 32 bits. UMULL
(unsigned multiply long) and SMULL (signed multiply long) multiply
two 32-bit numbers and produce a 64-bit product. For example, UMULL
R1, R2, R3, R4 performs an unsigned multiply of R3 and R4. The least
significant 32 bits of the product is placed in R1 and the most signifi-
cant 32 bits are placed in R2.

R5

Source register

ResultAssembly Code

LSL R0, R5, #7

LSR R1, R5, #17

ASR R2, R5, #3

ROR R3, R5, #21

1111 1111 0001 1100 0001 0000 1110 0111

1000 1110 0000 1000 0111 0011 1000 0000

0000 0000 0111 1111 1000 1110

1111 1111 1110 0011 1000 0010 0001 1100

1110 0000 1000 0111 0011 1111 1111 1000

R0

R1

R2

R3

0000 0000

Figure 6.4 Shift instructions with
immediate shift amounts

R8

Source registers

ResultAssembly code

LSL R4, R8, R6

ROR R5, R8, R6

0000 1000 0001 1100 0001 0110 1110 0111

0110 1110 0111 0000 0000 0000 0000 0000

1000 0001

R4

R5

R6 0000 0000 0000 0000 0000 0000 0001 0100

0111 00000110 11101100 0001

Figure 6.5 Shift instructions with
register shift amounts

6.3 Programming 305

Shifting a value left byN is equivalent tomultiplying it by 2N. Likewise, arith-
metically shifting a value right by N is equivalent to dividing it by 2N, as
discussed in Section 5.2.5. Logical shifts are also used to extract or assemble
bitfields.

Figure 6.5 shows the assembly code and resulting register values for
shift operations where the shift amount is held in a register, R6. This
instruction uses the register-shifted register addressing mode, where one
register (R8) is shifted by the amount (20) held in a second register (R6).

Multiply Instructions*
Multiplication is somewhat different from other arithmetic operations.
Multiplying two 32-bit numbers produces a 64-bit product. The ARM
architecture provides multiply instructions that result in a 32-bit or
64-bit product. Multiply (MUL) multiplies two 32-bit numbers and pro-
duces a 32-bit result. MUL R1, R2, R3 multiplies the values in R2 and
R3 and places the least significant bits of the product in R1; the most
significant 32 bits of the product are discarded. This instruction is useful
for multiplying small numbers whose result fits in 32 bits. UMULL
(unsigned multiply long) and SMULL (signed multiply long) multiply
two 32-bit numbers and produce a 64-bit product. For example, UMULL
R1, R2, R3, R4 performs an unsigned multiply of R3 and R4. The least
significant 32 bits of the product is placed in R1 and the most signifi-
cant 32 bits are placed in R2.

R5

Source register

ResultAssembly Code

LSL R0, R5, #7

LSR R1, R5, #17

ASR R2, R5, #3

ROR R3, R5, #21

1111 1111 0001 1100 0001 0000 1110 0111

1000 1110 0000 1000 0111 0011 1000 0000

0000 0000 0111 1111 1000 1110

1111 1111 1110 0011 1000 0010 0001 1100

1110 0000 1000 0111 0011 1111 1111 1000

R0

R1

R2

R3

0000 0000

Figure 6.4 Shift instructions with
immediate shift amounts

R8

Source registers

ResultAssembly code

LSL R4, R8, R6

ROR R5, R8, R6

0000 1000 0001 1100 0001 0110 1110 0111

0110 1110 0111 0000 0000 0000 0000 0000

1000 0001

R4

R5

R6 0000 0000 0000 0000 0000 0000 0001 0100

0111 00000110 11101100 0001

Figure 6.5 Shift instructions with
register shift amounts

6.3 Programming 305

8

CPU Flags [Harris and Harris(2016)]

Each of these instructions also has a multiply-accumulate variant,
MLA, SMLAL, and UMLAL, that adds the product to a running 32- or 64-
bit sum. These instructions can boost the math performance in applica-
tions such as matrix multiplication and signal processing consisting of
repeated multiplies and adds.

6 . 3 . 2 Condition Flags

Programs would be boring if they could only run in the same order every
time. ARM instructions optionally set condition flags based on whether
the result is negative, zero, etc. Subsequent instructions then execute con-
ditionally, depending on the state of those condition flags. The ARM con-
dition flags, also called status flags, are negative (N), zero (Z), carry (C),
and overflow (V), as listed in Table 6.2. These flags are set by the ALU
(see Section 5.2.4) and are held in the top 4 bits of the 32-bit Current Pro-
gram Status Register (CPSR), as shown in Figure 6.6.

The most common way to set the status bits is with the compare (CMP)
instruction, which subtracts the second source operand from the first and
sets the condition flags based on the result. For example, if the numbers
are equal, the result will be zero and the Z flag is set. If the first number
is an unsigned value that is higher than or the same as the second, the sub-
traction will produce a carry out and the C flag is set.

Subsequent instructions can conditionally execute depending on the
state of the flags. The instruction mnemonic is followed by a condition
mnemonic that indicates when to execute. Table 6.3 lists the 4-bit condi-
tion field (cond), the condition mnemonic, name, and the state of the con-
dition flags that result in instruction execution (CondEx). For example,
suppose a program performs CMP R4, R5, and then ADDEQ R1, R2, R3.
The compare sets the Z flag if R4 and R5 are equal, and the ADDEQ
executes only if the Z flag is set. The cond field will be used in machine
language encodings in Section 6.4.

The least significant five
bits of the CPSR are mode
bits and will be described in
Section 6.6.3.

Table 6.2 Condition flags

Flag Name Description

N Negative Instruction result is negative, i.e., bit 31 of the
result is 1

Z Zero Instruction result is zero

C Carry Instruction causes a carry out

V oVerflow Instruction causes an overflow

N Z C V M[4:0]. . .

CPSR

4 bits 5 bits

31 30 29 28 01234

Figure 6.6 Current Program
Status Register (CPSR)

Other useful instructions for
comparing two values are CMN,
TST, and TEQ. Each instruction
performs an operation, updates
the condition flags, and
discards the result. CMN
(compare negative) compares
the first source to the negative
of the second source by
adding the two sources. As
will be shown in Section 6.4,
ARM instructions only
encode positive immediates.
So, CMN R2, #20 is used
instead of CMP R2, #-20.
TST (test) ANDs the source
operands. It is useful for
checking if some portion of the
register is zero or nonzero. For
example, TST R2, #0xFF
would set the Z flag if the low
byte of R2 is 0. TEQ (test if
equal) checks for equivalence
by XOR-ing the sources. Thus,
the Z flag is set when they are
equal and theN flag is set when
the signs are different.

306 CHAPTER SIX Architecture

9

Execução condicional [Harris and Harris(2016)]

Other data-processing instructions will set the condition flags when the
instruction mnemonic is followed by “S.” For example, SUBS R2, R3, R7
will subtract R7 from R3, put the result in R2, and set the condition flags.
Table B.5 in Appendix B summarizes which condition flags are influenced
by each instruction. All data-processing instructions will affect the N and
Z flags based on whether the result is zero or has the most significant bit
set. ADDS and SUBS also influence V and C, and shifts influence C.

Code Example 6.10 shows instructions that execute conditionally.
The first instruction, CMP R2, R3, executes unconditionally and sets the
condition flags. The remaining instructions execute conditionally, depending
on the values of the condition flags. Suppose R2 and R3 contain the
values 0x80000000 and 0x00000001. The compare computes R2 –R3=
0x80000000 – 0x00000001= 0x80000000+ 0xFFFFFFFF= 0x7FFFFFFF
with a carry out (C= 1). The sources had opposite signs and the sign
of the result differs from the sign of the first source, so the result
overflows (V= 1). The remaining flags (N and Z) are 0. ANDHS executes

Table 6.3 Condition mnemonics

cond Mnemonic Name CondEx

0000 EQ Equal Z

0001 NE Not equal Z

0010 CS/HS Carry set / unsigned higher or same C

0011 CC/LO Carry clear / unsigned lower C

0100 MI Minus / negative N

0101 PL Plus / positive or zero N

0110 VS Overflow / overflow set V

0111 VC No overflow / overflow clear V

1000 HI Unsigned higher ZC

1001 LS Unsigned lower or same Z OR C

1010 GE Signed greater than or equal N⊕V

1011 LT Signed less than N⊕V

1100 GT Signed greater than ZðN⊕V Þ

1101 LE Signed less than or equal Z OR ðN⊕VÞ

1110 AL (or none) Always / unconditional Ignored

Condition mnemonics differ
for signed and unsigned
comparison. For example,
ARM provides two forms of
greater than or equal
comparison: HS (CS) is used
for unsigned numbers and GE
for signed. For unsigned
numbers, A – B will produce a
carry out (C) when A ≥ B. For
signed numbers, A – B will
make N and V either both 0 or
both 1 when A ≥ B. Figure 6.7
highlights the difference
between HS and GE
comparisons with two
examples using 4-bit numbers
for ease of interpretation.

(a)

1001

1110

A – B:

A – B:

+

10111

NZCV = 00112

HS: TRUE
GE: FALSE

A = 10012

B = 00102

A = 01012

B = 11012

(b)

Unsigned

A = 9

B = 2

Unsigned

A = 5

B = 13

Signed

Signed

A = –7

B = 2

A = 5

B = –3

0101

0011+

1000

NZCV = 10012

HS: FALSE
GE: TRUE

Figure 6.7 Signed vs. unsigned
comparison: HS vs. GE

6.3 Programming 307

Other data-processing instructions will set the condition flags when the
instruction mnemonic is followed by “S.” For example, SUBS R2, R3, R7
will subtract R7 from R3, put the result in R2, and set the condition flags.
Table B.5 in Appendix B summarizes which condition flags are influenced
by each instruction. All data-processing instructions will affect the N and
Z flags based on whether the result is zero or has the most significant bit
set. ADDS and SUBS also influence V and C, and shifts influence C.

Code Example 6.10 shows instructions that execute conditionally.
The first instruction, CMP R2, R3, executes unconditionally and sets the
condition flags. The remaining instructions execute conditionally, depending
on the values of the condition flags. Suppose R2 and R3 contain the
values 0x80000000 and 0x00000001. The compare computes R2 –R3=
0x80000000 – 0x00000001= 0x80000000+ 0xFFFFFFFF= 0x7FFFFFFF
with a carry out (C= 1). The sources had opposite signs and the sign
of the result differs from the sign of the first source, so the result
overflows (V= 1). The remaining flags (N and Z) are 0. ANDHS executes

Table 6.3 Condition mnemonics

cond Mnemonic Name CondEx

0000 EQ Equal Z

0001 NE Not equal Z

0010 CS/HS Carry set / unsigned higher or same C

0011 CC/LO Carry clear / unsigned lower C

0100 MI Minus / negative N

0101 PL Plus / positive or zero N

0110 VS Overflow / overflow set V

0111 VC No overflow / overflow clear V

1000 HI Unsigned higher ZC

1001 LS Unsigned lower or same Z OR C

1010 GE Signed greater than or equal N⊕V

1011 LT Signed less than N⊕V

1100 GT Signed greater than ZðN⊕V Þ

1101 LE Signed less than or equal Z OR ðN⊕VÞ

1110 AL (or none) Always / unconditional Ignored

Condition mnemonics differ
for signed and unsigned
comparison. For example,
ARM provides two forms of
greater than or equal
comparison: HS (CS) is used
for unsigned numbers and GE
for signed. For unsigned
numbers, A – B will produce a
carry out (C) when A ≥ B. For
signed numbers, A – B will
make N and V either both 0 or
both 1 when A ≥ B. Figure 6.7
highlights the difference
between HS and GE
comparisons with two
examples using 4-bit numbers
for ease of interpretation.

(a)

1001

1110

A – B:

A – B:

+

10111

NZCV = 00112

HS: TRUE
GE: FALSE

A = 10012

B = 00102

A = 01012

B = 11012

(b)

Unsigned

A = 9

B = 2

Unsigned

A = 5

B = 13

Signed

Signed

A = –7

B = 2

A = 5

B = –3

0101

0011+

1000

NZCV = 10012

HS: FALSE
GE: TRUE

Figure 6.7 Signed vs. unsigned
comparison: HS vs. GE

6.3 Programming 307

10

Execução condicional [Harris and Harris(2016)]

R2 = 0x80000000, R3 = 0x00000001

R2 – R3 = 0x80000000 + 0xFFFFFFFF = 0x7FFFFFFF ⇒ C=1, V=1, N=0, Z=0

because C= 1. EORLT executes because N is 0 and V is 1 (see Table 6.3).
Intuitively, ANDHS and EORLT execute because R2 ≥ R3 (unsigned) and R2
<R3 (signed), respectively. ADDEQ and ORRMI do not execute because the
result of R2 – R3 is not zero (i.e., R2 ≠ R3) or negative.

6 . 3 . 3 Branching

An advantage of a computer over a calculator is its ability to make deci-
sions. A computer performs different tasks depending on the input. For
example, if/else statements, switch/case statements, while loops, and for
loops all conditionally execute code depending on some test.

One way to make decisions is to use conditional execution to ignore
certain instructions. This works well for simple if statements where a
small number of instructions are ignored, but it is wasteful for if state-
ments with many instructions in the body, and it is insufficient to handle
loops. Thus, ARM and most other architectures use branch instructions
to skip over sections of code or repeat code.

A program usually executes in sequence, with the program counter
(PC) incrementing by 4 after each instruction to point to the next instruc-
tion. (Recall that instructions are 4 bytes long and ARM is a byte-
addressed architecture.) Branch instructions change the program counter.
ARM includes two types of branches: a simple branch (B) and branch and
link (BL). BL is used for function calls and is discussed in Section 6.3.7.
Like other ARM instructions, branches can be unconditional or condi-
tional. Branches are also called jumps in some architectures.

Code Example 6.11 shows unconditional branching using the
branch instruction B. When the code reaches the B TARGET instruction,
the branch is taken. That is, the next instruction executed is the SUB
instruction just after the label called TARGET.

Assembly code uses labels to indicate instruction locations in the pro-
gram. When the assembly code is translated into machine code, these
labels are translated into instruction addresses (see Section 6.4.3). ARM
assembly labels cannot be reserved words, such as instruction mnemonics.
Most programmers indent their instructions but not the labels, to help

Code Example 6.10 CONDITIONAL EXECUTION

ARM Assembly Code

CMP R2, R3

ADDEQ R4, R5, #78

ANDHS R7, R8, R9

ORRMI R10, R11, R12

EORLT R12, R7, R10

308 CHAPTER SIX Architecture

ADDEQ 7 ANDHS 3 ORRMI 7 EORLT 3

11

Salto [in]condicional [Harris and Harris(2016)]

make labels stand out. The ARM compiler makes this a requirement:
labels must not be indented, and instructions must be preceded by white
space. Some compilers, including GCC, require a colon after the label.

Branch instructions can execute conditionally based on the condi-
tion mnemonics listed in Table 6.3. Code Example 6.12 illustrates the
use of BEQ, branching dependent on equality (Z = 1). When the code
reaches the BEQ instruction, the Z condition flag is 0 (i.e., R0 ≠ R1), so
the branch is not taken. That is, the next instruction executed is the
ORR instruction.

6 . 3 . 4 Conditional Statements

if, if/else, and switch/case statements are conditional statements com-
monly used in high-level languages. They each conditionally execute a
block of code consisting of one or more statements. This section shows
how to translate these high-level constructs into ARM assembly language.

if Statements
An if statement executes a block of code, the if block, only when a condi-
tion is met. Code Example 6.13 shows how to translate an if statement
into ARM assembly code.

Code Example 6.11 UNCONDITIONAL BRANCHING

ARM Assembly Code
ADD R1, R2, #17 ; R1 = R2 + 17
B TARGET ; branch to TARGET
ORR R1, R1, R3 ; not executed
AND R3, R1, #0xFF ; not executed

TARGET
SUB R1, R1, #78 ; R1 = R1 − 78

Code Example 6.12 CONDITIONAL BRANCHING

ARM Assembly Code

MOV R0, #4 ; R0 = 4
ADD R1, R0, R0 ; R1 = R0 + R0 = 8
CMP R0, R1 ; set flags based on R0−R1 = −4. NZCV = 1000
BEQ THERE ; branch not taken (Z != 1)
ORR R1, R1, #1 ; R1 = R1 OR 1 = 9

THERE
ADD R1, R1, #78 ; R1 = R1 + 78 = 87

6.3 Programming 309

make labels stand out. The ARM compiler makes this a requirement:
labels must not be indented, and instructions must be preceded by white
space. Some compilers, including GCC, require a colon after the label.

Branch instructions can execute conditionally based on the condi-
tion mnemonics listed in Table 6.3. Code Example 6.12 illustrates the
use of BEQ, branching dependent on equality (Z = 1). When the code
reaches the BEQ instruction, the Z condition flag is 0 (i.e., R0 ≠ R1), so
the branch is not taken. That is, the next instruction executed is the
ORR instruction.

6 . 3 . 4 Conditional Statements

if, if/else, and switch/case statements are conditional statements com-
monly used in high-level languages. They each conditionally execute a
block of code consisting of one or more statements. This section shows
how to translate these high-level constructs into ARM assembly language.

if Statements
An if statement executes a block of code, the if block, only when a condi-
tion is met. Code Example 6.13 shows how to translate an if statement
into ARM assembly code.

Code Example 6.11 UNCONDITIONAL BRANCHING

ARM Assembly Code
ADD R1, R2, #17 ; R1 = R2 + 17
B TARGET ; branch to TARGET
ORR R1, R1, R3 ; not executed
AND R3, R1, #0xFF ; not executed

TARGET
SUB R1, R1, #78 ; R1 = R1 − 78

Code Example 6.12 CONDITIONAL BRANCHING

ARM Assembly Code

MOV R0, #4 ; R0 = 4
ADD R1, R0, R0 ; R1 = R0 + R0 = 8
CMP R0, R1 ; set flags based on R0−R1 = −4. NZCV = 1000
BEQ THERE ; branch not taken (Z != 1)
ORR R1, R1, #1 ; R1 = R1 OR 1 = 9

THERE
ADD R1, R1, #78 ; R1 = R1 + 78 = 87

6.3 Programming 309

12

Estrutura If/Else [Harris and Harris(2016)]

Again, because any instruction can conditionally execute and because
the instructions within the if block do not change the condition flags, the
ARM assembly code for Code Example 6.14 could also be written much
more succinctly as:

CMP R0, R1 ; apples == oranges?
ADDEQ R2, R3, #1 ; f = i + 1 on equality (i.e., Z = 1)
SUBNE R2, R2, R3 ; f = f − i on not equal (i.e., Z = 0)

switch/case Statements*
switch/case statements execute one of several blocks of code depending
on the conditions. If no conditions are met, the default block is executed.
A case statement is equivalent to a series of nested if/else statements.
Code Example 6.15 shows two high-level code snippets with the same

Code Example 6.14 IF/ELSE STATEMENT

High-Level Code
if (apples == oranges)

f = i + 1;

else
f = f − i;

ARM Assembly Code
; R0 = apples, R1 = oranges, R2 = f, R3 = i
CMP R0, R1 ; apples == oranges?
BNE L1 ; if not equal, skip if block
ADD R2, R3, #1 ; if block: f = i + 1
B L2 ; skip else block

L1
SUB R2, R2, R3 ; else block: f = f − i

L2

Code Example 6.15 SWITCH/CASE STATEMENT

High-Level Code
switch (button) {

case 1: amt = 20; break;

case 2: amt = 50; break;

case 3: amt = 100; break;

default: amt = 0;
}
// equivalent function using
// if/else statements

if (button == 1)amt = 20;
else if (button == 2)amt = 50;
else if (button == 3) amt = 100;
else amt = 0;

ARM Assembly Code
; R0 = button, R1 = amt
CMP R0, #1 ; is button 1 ?
MOVEQ R1, #20 ; amt = 20 if button is 1
BEQ DONE ; break

CMP R0, #2 ; is button 2 ?
MOVEQ R1, #50 ; amt = 50 if button is 2
BEQ DONE ; break

CMP R0, #3 ; is button 3?
MOVEQ R1, #100 ; amt = 100 if button is 3
BEQ DONE ; break

MOV R1, #0 ; default amt = 0
DONE

6.3 Programming 311

13

Estrutura If/Else [Harris and Harris(2016)]

Again, because any instruction can conditionally execute and because
the instructions within the if block do not change the condition flags, the
ARM assembly code for Code Example 6.14 could also be written much
more succinctly as:

CMP R0, R1 ; apples == oranges?
ADDEQ R2, R3, #1 ; f = i + 1 on equality (i.e., Z = 1)
SUBNE R2, R2, R3 ; f = f − i on not equal (i.e., Z = 0)

switch/case Statements*
switch/case statements execute one of several blocks of code depending
on the conditions. If no conditions are met, the default block is executed.
A case statement is equivalent to a series of nested if/else statements.
Code Example 6.15 shows two high-level code snippets with the same

Code Example 6.14 IF/ELSE STATEMENT

High-Level Code
if (apples == oranges)

f = i + 1;

else
f = f − i;

ARM Assembly Code
; R0 = apples, R1 = oranges, R2 = f, R3 = i
CMP R0, R1 ; apples == oranges?
BNE L1 ; if not equal, skip if block
ADD R2, R3, #1 ; if block: f = i + 1
B L2 ; skip else block

L1
SUB R2, R2, R3 ; else block: f = f − i

L2

Code Example 6.15 SWITCH/CASE STATEMENT

High-Level Code
switch (button) {

case 1: amt = 20; break;

case 2: amt = 50; break;

case 3: amt = 100; break;

default: amt = 0;
}
// equivalent function using
// if/else statements

if (button == 1)amt = 20;
else if (button == 2)amt = 50;
else if (button == 3) amt = 100;
else amt = 0;

ARM Assembly Code
; R0 = button, R1 = amt
CMP R0, #1 ; is button 1 ?
MOVEQ R1, #20 ; amt = 20 if button is 1
BEQ DONE ; break

CMP R0, #2 ; is button 2 ?
MOVEQ R1, #50 ; amt = 50 if button is 2
BEQ DONE ; break

CMP R0, #3 ; is button 3?
MOVEQ R1, #100 ; amt = 100 if button is 3
BEQ DONE ; break

MOV R1, #0 ; default amt = 0
DONE

6.3 Programming 311

Again, because any instruction can conditionally execute and because
the instructions within the if block do not change the condition flags, the
ARM assembly code for Code Example 6.14 could also be written much
more succinctly as:

CMP R0, R1 ; apples == oranges?
ADDEQ R2, R3, #1 ; f = i + 1 on equality (i.e., Z = 1)
SUBNE R2, R2, R3 ; f = f − i on not equal (i.e., Z = 0)

switch/case Statements*
switch/case statements execute one of several blocks of code depending
on the conditions. If no conditions are met, the default block is executed.
A case statement is equivalent to a series of nested if/else statements.
Code Example 6.15 shows two high-level code snippets with the same

Code Example 6.14 IF/ELSE STATEMENT

High-Level Code
if (apples == oranges)

f = i + 1;

else
f = f − i;

ARM Assembly Code
; R0 = apples, R1 = oranges, R2 = f, R3 = i
CMP R0, R1 ; apples == oranges?
BNE L1 ; if not equal, skip if block
ADD R2, R3, #1 ; if block: f = i + 1
B L2 ; skip else block

L1
SUB R2, R2, R3 ; else block: f = f − i

L2

Code Example 6.15 SWITCH/CASE STATEMENT

High-Level Code
switch (button) {

case 1: amt = 20; break;

case 2: amt = 50; break;

case 3: amt = 100; break;

default: amt = 0;
}
// equivalent function using
// if/else statements

if (button == 1)amt = 20;
else if (button == 2)amt = 50;
else if (button == 3) amt = 100;
else amt = 0;

ARM Assembly Code
; R0 = button, R1 = amt
CMP R0, #1 ; is button 1 ?
MOVEQ R1, #20 ; amt = 20 if button is 1
BEQ DONE ; break

CMP R0, #2 ; is button 2 ?
MOVEQ R1, #50 ; amt = 50 if button is 2
BEQ DONE ; break

CMP R0, #3 ; is button 3?
MOVEQ R1, #100 ; amt = 100 if button is 3
BEQ DONE ; break

MOV R1, #0 ; default amt = 0
DONE

6.3 Programming 311

13

Estrutura Case [Harris and Harris(2016)]

Again, because any instruction can conditionally execute and because
the instructions within the if block do not change the condition flags, the
ARM assembly code for Code Example 6.14 could also be written much
more succinctly as:

CMP R0, R1 ; apples == oranges?
ADDEQ R2, R3, #1 ; f = i + 1 on equality (i.e., Z = 1)
SUBNE R2, R2, R3 ; f = f − i on not equal (i.e., Z = 0)

switch/case Statements*
switch/case statements execute one of several blocks of code depending
on the conditions. If no conditions are met, the default block is executed.
A case statement is equivalent to a series of nested if/else statements.
Code Example 6.15 shows two high-level code snippets with the same

Code Example 6.14 IF/ELSE STATEMENT

High-Level Code
if (apples == oranges)

f = i + 1;

else
f = f − i;

ARM Assembly Code
; R0 = apples, R1 = oranges, R2 = f, R3 = i
CMP R0, R1 ; apples == oranges?
BNE L1 ; if not equal, skip if block
ADD R2, R3, #1 ; if block: f = i + 1
B L2 ; skip else block

L1
SUB R2, R2, R3 ; else block: f = f − i

L2

Code Example 6.15 SWITCH/CASE STATEMENT

High-Level Code
switch (button) {

case 1: amt = 20; break;

case 2: amt = 50; break;

case 3: amt = 100; break;

default: amt = 0;
}
// equivalent function using
// if/else statements

if (button == 1)amt = 20;
else if (button == 2)amt = 50;
else if (button == 3) amt = 100;
else amt = 0;

ARM Assembly Code
; R0 = button, R1 = amt
CMP R0, #1 ; is button 1 ?
MOVEQ R1, #20 ; amt = 20 if button is 1
BEQ DONE ; break

CMP R0, #2 ; is button 2 ?
MOVEQ R1, #50 ; amt = 50 if button is 2
BEQ DONE ; break

CMP R0, #3 ; is button 3?
MOVEQ R1, #100 ; amt = 100 if button is 3
BEQ DONE ; break

MOV R1, #0 ; default amt = 0
DONE

6.3 Programming 311

14

Estrutura While [Harris and Harris(2016)]

The int data type in C refers
to a word of data representing
a two’s complement integer.
ARM uses 32-bit words, so an
int represents a number in
the range [−231, 231 − 1].

functionality: they calculate whether to dispense $20, $50, or $100 from an
ATM (automatic teller machine) depending on the button pressed. The
ARMassembly implementation is the same for both high-level code snippets.

6 . 3 . 5 Getting Loopy

Loops repeatedly execute a block of code depending on a condition. while
loops and for loops are common loop constructs used by high-level lan-
guages. This section shows how to translate them into ARM assembly
language, taking advantage of conditional branching.

while Loops
while loops repeatedly execute a block of code until a condition is not
met. The while loop in Code Example 6.16 determines the value of x such
that 2x= 128. It executes seven times, until pow= 128.

Like if/else statements, the assembly code for while loops tests the
opposite condition of the one in the high-level code. If that opposite con-
dition is TRUE (in this case, R0 == 128), the while loop is finished. If not
(R0 ≠128), the branch isn't taken and the loop body executes.

In Code Example 6.16, the while loop compares pow to 128 and exits the
loop if it is equal. Otherwise it doubles pow (using a left shift), increments x,
and branches back to the start of the while loop.

for Loops
It is very common to initialize a variable before a while loop, check that
variable in the loop condition, and change that variable each time
through the while loop. for loops are a convenient shorthand that com-
bines the initialization, condition check, and variable change in one place.
The format of the for loop is:

for (initialization; condition; loop operation)
statement

Code Example 6.16 WHILE LOOP

High-Level Code
int pow = 1;
int x = 0;

while (pow != 128) {
pow = pow * 2;
x = x + 1;

}

ARM Assembly Code
; R0 = pow, R1 = x
MOV R0, #1 ; pow = 1
MOV R1, #0 ; x = 0

WHILE
CMP R0, #128 ; pow != 128 ?
BEQ DONE ; if pow == 128, exit loop
LSL R0, R0, #1 ; pow = pow * 2
ADD R1, R1, #1 ; x = x + 1
B WHILE ; repeat loop

DONE

312 CHAPTER SIX Architecture

15

Estrutura For [Harris and Harris(2016)]

The initialization code executes before the for loop begins. The condi-
tion is tested at the beginning of each loop. If the condition is not met, the
loop exits. The loop operation executes at the end of each loop.

Code Example 6.17 adds the numbers from 0 to 9. The loop variable,
in this case i, is initialized to 0 and is incremented at the end of each loop
iteration. The for loop executes as long as i is less than 10. Note
that this example also illustrates relative comparisons. The loop checks
the< condition to continue, so the assembly code checks the opposite
condition, >=, to exit the loop.

Loops are especially useful for accessing large amounts of similar
data stored in memory, which is discussed next.

6 . 3 . 6 Memory

For ease of storage and access, similar data can be grouped together into
an array. An array stores its contents at sequential data addresses in mem-
ory. Each array element is identified by a number called its index. The
number of elements in the array is called the length of the array.

Figure 6.8 shows a 200-element array of scores stored in memory.
Code Example 6.18 is a grade inflation algorithm that adds 10 points
to each of the scores. Note that the code for initializing the scores array
is not shown. The index into the array is a variable (i) rather than a con-
stant, so we must multiply it by 4 before adding it to the base address.

ARM can scale (multiply) the index, add it to the base address, and
load from memory in a single instruction. Instead of the LSL and LDR
instruction sequence in Code Example 6.18, we can use a single instruction:

LDR R3, [R0, R1, LSL #2]

R1 is scaled (shifted left by two) then added to the base address (R0).
Thus, the memory address is R0 + (R1 × 4).

Code Example 6.17 FOR LOOP

High-Level Code
int i;
int sum = 0;

for (i = 0; i < 10; i = i + 1) {
sum = sum + i;

}

ARM Assembly Code
; R0 = i, R1 = sum

MOV R1, #0 ; sum = 0
MOV R0, #0 ; i = 0 loop initialization

FOR
CMP R0, #10 ; i < 10 ? check condition
BGE DONE ; if (i >= 10) exit loop
ADD R1, R1, R0 ; sum = sum + i loop body
ADD R0, R0, #1 ; i = i + 1 loop operation
B FOR ; repeat loop

DONE

1400031C scores[199]

14000318

14000004

14000000

scores[198]

scores[1]

scores[0]

Main memory

Address Data

Figure 6.8 Memory holding
scores[200] starting at base
address 0x14000000

6.3 Programming 313

16

Acesso a arranjos [Harris and Harris(2016)]

In addition to scaling the index register, ARM provides offset, pre-
indexed, and post-indexed addressing to enable dense and efficient code
for array accesses and function calls. Table 6.4 gives examples of each
indexing mode. In each case, the base register is R1 and the offset is
R2. The offset can be subtracted by writing –R2. The offset may also be
an immediate in the range of 0–4095 that can be added (e.g., #20) or sub-
tracted (e.g., #−20).

Offset addressing calculates the address as the base register ± the off-
set; the base register is unchanged. Pre-indexed addressing calculates the
address as the base register ± the offset and updates the base register to
this new address. Post-indexed addressing calculates the address as the
base register only and then, after accessing memory, the base register is
updated to the base register ± the offset. We have seen many examples
of offset indexing mode. Code Example 6.19 shows the for loop from
Code Example 6.18 rewritten to use post-indexing, eliminating the ADD
to increment i.

Code Example 6.18 ACCESSING ARRAYS USING A FOR LOOP

High-Level Code
int i;
int scores[200];
...

for (i = 0; i < 200; i = i + 1)

scores[i] = scores[i] + 10;

ARM Assembly Code
; R0 = array base address, R1 = i
; initialization code ...

MOV R0, #0x14000000 ; R0 = base address
MOV R1, #0 ; i = 0

LOOP
CMP R1, #200 ; i < 200?
BGE L3 ; if i ≥ 200, exit loop
LSL R2, R1, #2 ; R2 = i * 4
LDR R3, [R0, R2] ; R3 = scores[i]
ADD R3, R3, #10 ; R3 = scores[i] + 10
STR R3, [R0, R2] ; scores[i] = scores[i] + 10
ADD R1, R1, #1 ; i = i + 1
B LOOP ; repeat loop

L3

Table 6.4 ARM indexing modes

Mode ARM Assembly Address Base Register

Offset LDR R0, [R1, R2] R1 + R2 Unchanged

Pre-index LDR R0, [R1, R2]! R1 + R2 R1 = R1 + R2

Post-index LDR R0, [R1], R2 R1 R1 = R1 + R2

314 CHAPTER SIX Architecture

17

Modos de indexação [Harris and Harris(2016)]

In addition to scaling the index register, ARM provides offset, pre-
indexed, and post-indexed addressing to enable dense and efficient code
for array accesses and function calls. Table 6.4 gives examples of each
indexing mode. In each case, the base register is R1 and the offset is
R2. The offset can be subtracted by writing –R2. The offset may also be
an immediate in the range of 0–4095 that can be added (e.g., #20) or sub-
tracted (e.g., #−20).

Offset addressing calculates the address as the base register ± the off-
set; the base register is unchanged. Pre-indexed addressing calculates the
address as the base register ± the offset and updates the base register to
this new address. Post-indexed addressing calculates the address as the
base register only and then, after accessing memory, the base register is
updated to the base register ± the offset. We have seen many examples
of offset indexing mode. Code Example 6.19 shows the for loop from
Code Example 6.18 rewritten to use post-indexing, eliminating the ADD
to increment i.

Code Example 6.18 ACCESSING ARRAYS USING A FOR LOOP

High-Level Code
int i;
int scores[200];
...

for (i = 0; i < 200; i = i + 1)

scores[i] = scores[i] + 10;

ARM Assembly Code
; R0 = array base address, R1 = i
; initialization code ...

MOV R0, #0x14000000 ; R0 = base address
MOV R1, #0 ; i = 0

LOOP
CMP R1, #200 ; i < 200?
BGE L3 ; if i ≥ 200, exit loop
LSL R2, R1, #2 ; R2 = i * 4
LDR R3, [R0, R2] ; R3 = scores[i]
ADD R3, R3, #10 ; R3 = scores[i] + 10
STR R3, [R0, R2] ; scores[i] = scores[i] + 10
ADD R1, R1, #1 ; i = i + 1
B LOOP ; repeat loop

L3

Table 6.4 ARM indexing modes

Mode ARM Assembly Address Base Register

Offset LDR R0, [R1, R2] R1 + R2 Unchanged

Pre-index LDR R0, [R1, R2]! R1 + R2 R1 = R1 + R2

Post-index LDR R0, [R1], R2 R1 R1 = R1 + R2

314 CHAPTER SIX Architecture

18

Acesso a arranjos com pós-incremento [Harris and Harris(2016)]

Bytes and Characters
Numbers in the range [−128, 127] can be stored in a single byte rather
than an entire word. Because there are much fewer than 256 characters
on an English language keyboard, English characters are often repre-
sented by bytes. The C language uses the type char to represent a byte
or character.

Early computers lacked a standard mapping between bytes and
English characters, so exchanging text between computers was
difficult. In 1963, the American Standards Association published
the American Standard Code for Information Interchange (ASCII),
which assigns each text character a unique byte value. Table 6.5
shows these character encodings for printable characters. The ASCII
values are given in hexadecimal. Lowercase and uppercase letters differ
by 0x20 (32).

ARM provides load byte (LDRB), load signed byte (LDRSB), and store
byte (STRB) to access individual bytes in memory. LDRB zero-extends the
byte, whereas LDRSB sign-extends the byte to fill the entire 32-bit register.
STRB stores the least significant byte of the 32-bit register into the speci-
fied byte address in memory. All three are illustrated in Figure 6.9, with

Code Example 6.19 FOR LOOP USING POST-INDEXING

High-Level Code
int i;
int scores[200];
...

for (i = 0; i < 200; i = i + 1)
scores[i] = scores[i] + 10;

ARM Assembly Code
; R0 = array base address
; initialization code ...

MOV R0, #0x14000000 ; R0 = base address
ADD R1, R0, #800 ; R1 = base address + (200*4)

LOOP
CMP R0, R1 ; reached end of array?
BGE L3 ; if yes, exit loop
LDR R2, [R0] ; R2 = scores[i]
ADD R2, R2, #10 ; R2 = scores[i] + 10
STR R2, [R0], #4 ; scores[i] = scores[i] + 10

; then R0 = R0 + 4
B LOOP ; repeat loop
L3

Other programming languages,
such as Java, use different
character encodings, most
notably Unicode. Unicode uses
16 bits to represent each
character, so it supports accents,
umlauts, and Asian languages.
For more information, see
www.unicode.org.

Byte Address

03428CF7Data

3 2 1 0 R1 00 8C LDRB R1, [R4, #2]0000

Registers

R2 FF 8C LDRSB R2, [R4, #2]FFFF

R3 9B STRB R3, [R4, #3]xx xx xx

Memory

Figure 6.9 Instructions for loading
and storing bytes

LDRH, LDRSH, and STRH are
similar, but access 16-bit
halfwords.

6.3 Programming 315

19

Para saber mais e praticar...

• https://www.arm.com/resources

• https://salmanarif.bitbucket.io/visual/

• https://cpulator.01xz.net/?sys=arm

• https://azm.azerialabs.com/

• https://www.edaplayground.com/x/vcGc

20

https://www.arm.com/resources
https://salmanarif.bitbucket.io/visual/
https://cpulator.01xz.net/?sys=arm
https://azm.azerialabs.com/
https://www.edaplayground.com/x/vcGc

Bibliografia

David Harris and Sarah Harris.

Digital Design and Computer Architecture: ARM® Edition.

Morgan Kaufmann, 2016.

21

