
Microprocessadores e Microcontroladores (27146)

Conjunto de instruções (x86)

Prof. Ricardo Menotti (menotti@ufscar.br)

Atualizado em: 26 de abril de 2021

Departamento de Computação

Centro de Ciências Exatas e de Tecnologia

Universidade Federal de São Carlos

1

mailto:menotti@ufscar.br

Processadores Intel

• 8086/8088 (16 bits) introduzidos no final da década de 1970 (3 µm);

• 80386 DX/SX (32 bits) introduzidos em 1989 (1 µm);

• Pentium (32 bits) com instruções MMX introduzido em 1997 (0.35 µm);

• Xeon (64 bits) compativel com AMD64 introduzido em 2004 (90 nm);

• Core i3/i5/i7/i9 hoje na 10ª geração (14 nm);

2

https://www.youtube.com/watch?v=0eEG5LVXdKo

Principais diferenças do x86 com ARM/RISC [Harris and Harris(2016)]

The x86 architecture has a long and convoluted history dating back
to 1978, when Intel announced the 16-bit 8086 microprocessor. IBM
selected the 8086 and its cousin, the 8088, for IBM’s first personal com-
puters. In 1985, Intel introduced the 32-bit 80386 microprocessor, which
was backward compatible with the 8086, so it could run software devel-
oped for earlier PCs. Processor architectures compatible with the 80386
are called x86 processors. The Pentium, Core, and Athlon processors
are well known x86 processors.

Various groups at Intel and AMD over many years have shoehorned
more instructions and capabilities into the antiquated architecture. The
result is far less elegant than ARM. However, software compatibility is far
more important than technical elegance, so x86 has been the de facto PC
standard for more than two decades. More than 100 million x86 processors
are sold every year. This huge market justifies more than $5 billion of
research and development annually to continue improving the processors.

x86 is an example of a Complex Instruction Set Computer (CISC)
architecture. In contrast to RISC architectures such as ARM, each CISC
instruction can do more work. Programs for CISC architectures usually
require fewer instructions. The instruction encodings were selected to be
more compact, so as to save memory, when RAM was far more expensive
than it is today; instructions are of variable length and are often less than
32 bits. The trade-off is that complicated instructions are more difficult to
decode and tend to execute more slowly.

This section introduces the x86 architecture. The goal is not to make
you into an x86 assembly language programmer, but rather to illustrate
some of the similarities and differences between x86 and ARM. We think
it is interesting to see how x86 works. However, none of the material in
this section is needed to understand the rest of the book. Major differ-
ences between x86 and ARM are summarized in Table 6.19.

Table 6.19 Major differences between ARM and x86

Feature ARM x86

of registers 15 general purpose 8, some restrictions on purpose

of operands 3–4 (2–3 sources, 1 destination) 2 (1 source, 1 source/destination)

operand location registers or immediates registers, immediates, or memory

operand size 32 bits 8, 16, or 32 bits

condition flags yes yes

instruction types simple simple and complicated

instruction encoding fixed, 4 bytes variable, 1–15 bytes

6.8 Another Perspective: x86 Architecture 361

3

Operandos em memória [Harris and Harris(2016)]

6 . 8 . 1 x86 Registers

The 8086 microprocessor provided eight 16-bit registers. It could
separately access the upper and lower eight bits of some of these
registers. When the 32-bit 80386 was introduced, the registers were
extended to 32 bits. These registers are called EAX, ECX, EDX, EBX,
ESP, EBP, ESI, and EDI. For backward compatibility, the bottom 16 bits
and some of the bottom 8-bit portions are also usable, as shown in
Figure 6.35.

The eight registers are almost, but not quite, general purpose. Certain
instructions cannot use certain registers. Other instructions always put
their results in certain registers. Like SP in ARM, ESP is normally reserved
for the stack pointer.

The x86 program counter is called the EIP (the extended instruction
pointer). Like the ARM PC, it advances from one instruction to the next
or can be changed with branch and function call instructions.

6 . 8 . 2 x86 Operands

ARM instructions always act on registers or immediates. Explicit load
and store instructions are needed to move data between memory and
the registers. In contrast, x86 instructions may operate on registers,
immediates, or memory. This partially compensates for the small set of
registers.

ARM instructions generally specify three operands: two sources and
one destination. x86 instructions specify only two operands. The first is
a source. The second is both a source and the destination. Hence, x86
instructions always overwrite one of their sources with the result.
Table 6.20 lists the combinations of operand locations in x86. All combi-
nations are possible except memory to memory.

EAX
0

AH
AX

ECX
1

CH
CX

EDX
2

B
yte 0

B
yte 1

B
yte 2

B
yte 3

DH
DX

EBX
3

BH
BX

ESP
SP4

EBP
BP5

ESI
SI6

EDI
DI7

AL

CL

DL

BL

Figure 6.35 x86 registers

Table 6.20 Operand locations

Source/ Destination Source Example Meaning

register register add EAX, EBX EAX <− EAX + EBX

register immediate add EAX, 42 EAX <− EAX + 42

register memory add EAX, [20] EAX <− EAX + Mem[20]

memory register add [20], EAX Mem[20] <− Mem[20] + EAX

memory immediate add [20], 42 Mem[20] <− Mem[20] + 42

362 CHAPTER SIX Architecture

4

Modos de endereçamento [Harris and Harris(2016)]

Like ARM, x86 has a 32-bit memory space that is byte-addressable.
However, x86 supports a wider variety of memory indexing modes.
Memory locations are specified with any combination of a base register,
displacement, and a scaled index register. Table 6.21 illustrates these
combinations. The displacement can be an 8-, 16-, or 32-bit value. The
scale multiplying the index register can be 1, 2, 4, or 8. The base + displa-
cement mode is equivalent to the ARM base addressing mode for loads
and stores. Like ARM, x86 also provides a scaled index. In x86, the
scaled index provides an easy way to access arrays or structures of 2-,
4-, or 8-byte elements without having to issue a sequence of instructions
to generate the address.

While ARM always acts on 32-bit words, x86 instructions can oper-
ate on 8-, 16-, or 32-bit data. Table 6.22 illustrates these variations.

6 . 8 . 3 Status Flags

x86, like many CISC architectures, uses condition flags (also called status
flags) to make decisions about branches and to keep track of carries and
arithmetic overflow. x86 uses a 32-bit register, called EFLAGS, that
stores the status flags. Some of the bits of the EFLAGS register are given
in Table 6.23. Other bits are used by the operating system.

Table 6.21 Memory addressing modes

Example Meaning Comment

add EAX, [20] EAX <− EAX + Mem[20] displacement

add EAX, [ESP] EAX <− EAX + Mem[ESP] base addressing

add EAX, [EDX+40] EAX <− EAX + Mem[EDX+40] base + displacement

add EAX, [60+EDI*4] EAX <− EAX + Mem[60+EDI*4] displacement + scaled index

add EAX, [EDX+80+EDI*2] EAX <− EAX + Mem[EDX+80+EDI*2] base + displacement + scaled index

Table 6.22 Instructions acting on 8-, 16-, or 32-bit data

Example Meaning Data Size

add AH, BL AH <− AH + BL 8-bit

add AX, −1 AX <− AX + 0xFFFF 16-bit

add EAX, EDX EAX <− EAX + EDX 32-bit

ARM’s use of condition flags
sets it apart from other RISC
architectures.

6.8 Another Perspective: x86 Architecture 363

5

Registradores [Harris and Harris(2016)]

Like ARM, x86 has a 32-bit memory space that is byte-addressable.
However, x86 supports a wider variety of memory indexing modes.
Memory locations are specified with any combination of a base register,
displacement, and a scaled index register. Table 6.21 illustrates these
combinations. The displacement can be an 8-, 16-, or 32-bit value. The
scale multiplying the index register can be 1, 2, 4, or 8. The base + displa-
cement mode is equivalent to the ARM base addressing mode for loads
and stores. Like ARM, x86 also provides a scaled index. In x86, the
scaled index provides an easy way to access arrays or structures of 2-,
4-, or 8-byte elements without having to issue a sequence of instructions
to generate the address.

While ARM always acts on 32-bit words, x86 instructions can oper-
ate on 8-, 16-, or 32-bit data. Table 6.22 illustrates these variations.

6 . 8 . 3 Status Flags

x86, like many CISC architectures, uses condition flags (also called status
flags) to make decisions about branches and to keep track of carries and
arithmetic overflow. x86 uses a 32-bit register, called EFLAGS, that
stores the status flags. Some of the bits of the EFLAGS register are given
in Table 6.23. Other bits are used by the operating system.

Table 6.21 Memory addressing modes

Example Meaning Comment

add EAX, [20] EAX <− EAX + Mem[20] displacement

add EAX, [ESP] EAX <− EAX + Mem[ESP] base addressing

add EAX, [EDX+40] EAX <− EAX + Mem[EDX+40] base + displacement

add EAX, [60+EDI*4] EAX <− EAX + Mem[60+EDI*4] displacement + scaled index

add EAX, [EDX+80+EDI*2] EAX <− EAX + Mem[EDX+80+EDI*2] base + displacement + scaled index

Table 6.22 Instructions acting on 8-, 16-, or 32-bit data

Example Meaning Data Size

add AH, BL AH <− AH + BL 8-bit

add AX, −1 AX <− AX + 0xFFFF 16-bit

add EAX, EDX EAX <− EAX + EDX 32-bit

ARM’s use of condition flags
sets it apart from other RISC
architectures.

6.8 Another Perspective: x86 Architecture 363

6
.8

.1
x8
6
Re

gi
st
er
s

T
he

80
86

m
ic
ro
pr
oc

es
so
r

pr
ov

id
ed

ei
gh

t
16

-b
it

re
gi
st
er
s.

It
co

ul
d

se
pa

ra
te
ly

ac
ce
ss

th
e

up
pe

r
an

d
lo
w
er

ei
gh

t
bi
ts

of
so
m
e

of
th
es
e

re
gi
st
er
s.

W
he

n
th
e
32

-b
it

80
38

6
w
as

in
tr
od

uc
ed

,
th
e
re
gi
st
er
s
w
er
e

ex
te
nd

ed
to

32
bi
ts
.
T
he

se
re
gi
st
er
s
ar
e
ca
lle

d
E
A
X
,
E
C
X
,
E
D
X
,
E
B
X
,

E
SP

,E
B
P,

E
SI
,a

nd
E
D
I.
Fo

r
ba

ck
w
ar
d
co

m
pa

ti
bi
lit
y,

th
e
bo

tt
om

16
bi
ts

an
d

so
m
e
of

th
e
bo

tt
om

8-
bi
t
po

rt
io
ns

ar
e
al
so

us
ab

le
,
as

sh
ow

n
in

Fi
gu

re
6.
35

.
T
he

ei
gh

tr
eg
is
te
rs

ar
e
al
m
os
t,
bu

tn
ot

qu
ite

,g
en
er
al

pu
rp
os
e.
C
er
ta
in

in
st
ru
ct
io
ns

ca
nn

ot
us
e
ce
rt
ai
n

re
gi
st
er
s.

O
th
er

in
st
ru
ct
io
ns

al
w
ay
s
pu

t
th
ei
r
re
su
lts

in
ce
rt
ai
n
re
gi
st
er
s.
Li
ke

SP
in

A
R
M
,E

SP
is
no

rm
al
ly

re
se
rv
ed

fo
r
th
e
st
ac
k
po

in
te
r.

T
he

x8
6
pr
og

ra
m

co
un

te
r
is
ca
lle
d
th
e
EI
P
(t
he

ex
te
nd

ed
in
st
ru
ct
io
n

po
in
te
r)
.L

ik
e
th
e
A
R
M

PC
,i
t
ad

va
nc
es

fr
om

on
e
in
st
ru
ct
io
n
to

th
e
ne
xt

or
ca
n
be

ch
an

ge
d
w
ith

br
an

ch
an

d
fu
nc
tio

n
ca
ll
in
st
ru
ct
io
ns
.

6
.8

.2
x8
6
Op

er
an

ds

A
R
M

in
st
ru
ct
io
ns

al
w
ay

s
ac
t
on

re
gi
st
er
s
or

im
m
ed
ia
te
s.

Ex
pl
ic
it

lo
ad

an
d

st
or
e
in
st
ru
ct
io
ns

ar
e
ne
ed
ed

to
m
ov

e
da

ta
be
tw

ee
n

m
em

or
y
an

d
th
e

re
gi
st
er
s.

In
co
nt
ra
st
,
x8

6
in
st
ru
ct
io
ns

m
ay

op
er
at
e

on
re
gi
st
er
s,

im
m
ed
ia
te
s,

or
m
em

or
y.

T
hi
s
pa

rt
ia
lly

co
m
pe
ns
at
es

fo
r
th
e
sm

al
l
se
t
of

re
gi
st
er
s.

A
R
M

in
st
ru
ct
io
ns

ge
ne
ra
lly

sp
ec
ify

th
re
e
op

er
an

ds
:
tw

o
so
ur
ce
s
an

d
on

e
de
st
in
at
io
n.

x8
6
in
st
ru
ct
io
ns

sp
ec
ify

on
ly

tw
o
op

er
an

ds
.
T
he

fir
st

is
a
so
ur
ce
.
T
he

se
co
nd

is
bo

th
a
so
ur
ce

an
d
th
e
de
st
in
at
io
n.

H
en
ce
,
x8

6
in
st
ru
ct
io
ns

al
w
ay
s

ov
er
w
ri
te

on
e

of
th
ei
r

so
ur
ce
s

w
ith

th
e

re
su
lt.

T
ab

le
6.
20

lis
ts
th
e
co
m
bi
na

tio
ns

of
op

er
an

d
lo
ca
tio

ns
in

x8
6.

A
ll
co
m
bi
-

na
tio

ns
ar
e
po

ss
ib
le

ex
ce
pt

m
em

or
y
to

m
em

or
y.

E
A

X
0

A
HA

X

E
C

X
1

C
HC

X

E
D

X
2

Byte 0

Byte 1

Byte 2

Byte 3

D
HD

X

E
B

X
3

B
HB

X

E
S

P
S

P
4

E
B

P
B

P
5

E
S

I
S

I
6

E
D

I
D

I
7

A
L

C
L D
L

B
L

Fi
gu

re
6.
35

x8
6
re
gi
st
er
s

Ta
bl
e
6.
20

Op
er
an

d
lo
ca
tio

ns

So
ur
ce
/
D
es
tin

at
io
n

So
ur
ce

Ex
am

pl
e

M
ea
ni
ng

re
gi
st
er

re
gi
st
er

ad
d
EA

X,
EB

X
EA

X
<−

EA
X
+

EB
X

re
gi
st
er

im
m
ed
ia
te

ad
d
EA

X,
42

EA
X
<−

EA
X
+

42

re
gi
st
er

m
em

or
y

ad
d
EA

X,
[2

0]
EA

X
<−

EA
X
+

Me
m[

20
]

m
em

or
y

re
gi
st
er

ad
d
[2

0]
,
EA

X
Me

m[
20

]
<−

Me
m[

20
]
+

EA
X

m
em

or
y

im
m
ed
ia
te

ad
d
[2

0]
,
42

Me
m[

20
]
<−

Me
m[

20
]
+

42

36
2

CH
AP

TE
R
SI
X

Ar
ch
ite

ct
ur
e

6

Algumas instruções (i) [Harris and Harris(2016)]

Table 6.24 Selected x86 instructions

Instruction Meaning Function

ADD/SUB add/subtract D = D + S / D = D − S

ADDC add with carry D = D + S + CF

INC/DEC increment/decrement D = D + 1 / D = D − 1

CMP compare Set flags based on D − S

NEG negate D = − D

AND/OR/XOR logical AND/OR/XOR D = D op S

NOT logical NOT D = D

IMUL/MUL signed/unsigned multiply EDX:EAX = EAX × D

IDIV/DIV signed/unsigned divide EDX:EAX/D

EAX = Quotient; EDX = Remainder

SAR/SHR arithmetic/logical shift right D = D >>> S / D = D >> S

SAL/SHL left shift D = D << S

ROR/ROL rotate right/left Rotate D by S

RCR/RCL rotate right/left with carry Rotate CF and D by S

BT bit test CF = D[S] (the Sth bit of D)

BTR/BTS bit test and reset/set CF = D[S]; D[S] = 0 / 1

TEST set flags based on masked bits Set flags based on D AND S

MOV move D = S

PUSH push onto stack ESP = ESP −4; Mem[ESP] = S

POP pop off stack D = MEM[ESP]; ESP = ESP + 4

CLC, STC clear/set carry flag CF = 0 / 1

JMP unconditional jump relative jump: EIP = EIP + S

absolute jump: EIP = S

Jcc conditional jump if (flag) EIP = EIP + S

LOOP loop ECX = ECX −1
if (ECX ≠ 0) EIP = EIP + imm

CALL function call ESP = ESP −4;
MEM[ESP] = EIP; EIP = S

RET function return EIP = MEM[ESP]; ESP = ESP + 4

6.8 Another Perspective: x86 Architecture 365

7

Algumas instruções (ii) [Harris and Harris(2016)]

Table 6.24 Selected x86 instructions

Instruction Meaning Function

ADD/SUB add/subtract D = D + S / D = D − S

ADDC add with carry D = D + S + CF

INC/DEC increment/decrement D = D + 1 / D = D − 1

CMP compare Set flags based on D − S

NEG negate D = − D

AND/OR/XOR logical AND/OR/XOR D = D op S

NOT logical NOT D = D

IMUL/MUL signed/unsigned multiply EDX:EAX = EAX × D

IDIV/DIV signed/unsigned divide EDX:EAX/D

EAX = Quotient; EDX = Remainder

SAR/SHR arithmetic/logical shift right D = D >>> S / D = D >> S

SAL/SHL left shift D = D << S

ROR/ROL rotate right/left Rotate D by S

RCR/RCL rotate right/left with carry Rotate CF and D by S

BT bit test CF = D[S] (the Sth bit of D)

BTR/BTS bit test and reset/set CF = D[S]; D[S] = 0 / 1

TEST set flags based on masked bits Set flags based on D AND S

MOV move D = S

PUSH push onto stack ESP = ESP −4; Mem[ESP] = S

POP pop off stack D = MEM[ESP]; ESP = ESP + 4

CLC, STC clear/set carry flag CF = 0 / 1

JMP unconditional jump relative jump: EIP = EIP + S

absolute jump: EIP = S

Jcc conditional jump if (flag) EIP = EIP + S

LOOP loop ECX = ECX −1
if (ECX ≠ 0) EIP = EIP + imm

CALL function call ESP = ESP −4;
MEM[ESP] = EIP; EIP = S

RET function return EIP = MEM[ESP]; ESP = ESP + 4

6.8 Another Perspective: x86 Architecture 365

8

Saltos [Harris and Harris(2016)]

The opcode may be 1, 2, or 3 bytes. It is followed by four optional fields:
ModR/M, SIB, Displacement, and Immediate. ModR/M specifies an
addressing mode. SIB specifies the scale, index, and base registers in certain
addressing modes. Displacement indicates a 1-, 2-, or 4-byte displacement
in certain addressing modes. And Immediate is a 1-, 2-, or 4-byte constant
for instructions using an immediate as the source operand. Moreover, an
instruction can be preceded by up to four optional byte-long prefixes that
modify its behavior.

The ModR/M byte uses the 2-bit Mod and 3-bit R/M field to specify
the addressing mode for one of the operands. The operand can come from

Table 6.25 Selected branch conditions

Instruction Meaning Function after CMP D, S

JZ/JE jump if ZF = 1 jump if D = S

JNZ/JNE jump if ZF = 0 jump if D ≠ S

JGE jump if SF = OF jump if D ≥ S

JG jump if SF = OF and ZF = 0 jump if D >S

JLE jump if SF ≠ OF or ZF = 1 jump if D ≤ S

JL jump if SF ≠ OF jump if D <S

JC/JB jump if CF = 1

JNC jump if CF = 0

JO jump if OF = 1

JNO jump if OF = 0

JS jump if SF = 1

JNS jump if SF = 0

Prefixes ModR/M SIB Displacement Immediate

Up to 4 optional
prefixes

of 1 byte each

1-, 2-, or 3-byte
opcode

1 byte
(for certain
addressing

modes)

1 byte
(for certain
addressing

modes)

1, 2, or 4 bytes
for addressing

modes with
displacement

1, 2, or 4 bytes
for addressing

modes with
immediate

Scale Index BaseMod R/MReg/
Opcode

Opcode

2 bits 3 bits 3 bits2 bits 3 bits 3 bits

Figure 6.36 x86 instruction
encodings

366 CHAPTER SIX Architecture

9

Codificação das instruções [Harris and Harris(2016)]

The opcode may be 1, 2, or 3 bytes. It is followed by four optional fields:
ModR/M, SIB, Displacement, and Immediate. ModR/M specifies an
addressing mode. SIB specifies the scale, index, and base registers in certain
addressing modes. Displacement indicates a 1-, 2-, or 4-byte displacement
in certain addressing modes. And Immediate is a 1-, 2-, or 4-byte constant
for instructions using an immediate as the source operand. Moreover, an
instruction can be preceded by up to four optional byte-long prefixes that
modify its behavior.

The ModR/M byte uses the 2-bit Mod and 3-bit R/M field to specify
the addressing mode for one of the operands. The operand can come from

Table 6.25 Selected branch conditions

Instruction Meaning Function after CMP D, S

JZ/JE jump if ZF = 1 jump if D = S

JNZ/JNE jump if ZF = 0 jump if D ≠ S

JGE jump if SF = OF jump if D ≥ S

JG jump if SF = OF and ZF = 0 jump if D >S

JLE jump if SF ≠ OF or ZF = 1 jump if D ≤ S

JL jump if SF ≠ OF jump if D <S

JC/JB jump if CF = 1

JNC jump if CF = 0

JO jump if OF = 1

JNO jump if OF = 0

JS jump if SF = 1

JNS jump if SF = 0

Prefixes ModR/M SIB Displacement Immediate

Up to 4 optional
prefixes

of 1 byte each

1-, 2-, or 3-byte
opcode

1 byte
(for certain
addressing

modes)

1 byte
(for certain
addressing

modes)

1, 2, or 4 bytes
for addressing

modes with
displacement

1, 2, or 4 bytes
for addressing

modes with
immediate

Scale Index BaseMod R/MReg/
Opcode

Opcode

2 bits 3 bits 3 bits2 bits 3 bits 3 bits

Figure 6.36 x86 instruction
encodings

366 CHAPTER SIX Architecture

10

Para saber mais e praticar...

• http://ref.x86asm.net/index.html

• https://carlosrafaelgn.com.br/Asm86/

• https://www.tutorialspoint.com/compile_assembly_online.php

• https://software.intel.com/sites/landingpage/IntrinsicsGuide/

11

http://ref.x86asm.net/index.html
https://carlosrafaelgn.com.br/Asm86/
https://www.tutorialspoint.com/compile_assembly_online.php
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Bibliografia

David Harris and Sarah Harris.

Digital Design and Computer Architecture: ARM® Edition.

Morgan Kaufmann, 2016.

12

