

Microarquitetura

Prof. Ricardo Menotti (menotti@ufscar.br)

Atualizado em: 26 de abril de 2021

Departamento de Computação

Centro de Ciências Exatas e de Tecnologia Universidade Federal de São Carlos

Conteúdo

Considerações iniciais

Codificação das instruções

Processador monociclo

Processador multiciclo

Processador pipeline

Referências

Considerações iniciais

Subconjunto das instruções implementado [Harris and Harris(2016)]

- Processamento de dados: ADD, SUB, AND e ORR (com operandos em registradores e imediatos, mas sem deslocamentos);
- Acesso à memória: LDR e STR (com offset imediato positivo).
- Salto: B.

Elementos de estado do processador ARM

Figure 7.1 State elements of ARM processor

Tempo de execução de um programa

$$Execution \ Time = \bigg(\#instructions\bigg)\bigg(\frac{cycles}{instruction}\bigg)\bigg(\frac{seconds}{cycle}\bigg)$$

Codificação das instruções

Processamento de dados (Op = 00)

Figure 6.17 Data-processing instruction format showing the funct field and Src2 variations

Acesso à memória (Op = 01)

Figure 6.22 Memory instruction format for LDR, STR, LDRB, and STRB

Desvios (Op = 10)

Figure 6.24 Branch instruction format

Processador monociclo

Figure 7.2 Fetch instruction from memory

Figure 7.3 Read source operand from register file

Figure 7.4 Zero-extend the immediate

Figure 7.5 Compute memory address

Figure 7.6 Write data back to register file

Figure 7.7 Increment program counter

Figure 7.8 Read or write program counter as R15

Figure 7.9 Write data to memory for $\ensuremath{\mathsf{STR}}$ instruction

Execução das instruções de processamento de dados com imediatos

Figure 7.10 Datapath enhancements for data-processing instructions with immediate addressing

Execução das instruções de processamento de dados com registradores

Figure 7.11 Datapath enhancements for data-processing instructions with register addressing

Figure 7.12 Datapath enhancements for B instruction

Resumo das opções de imediatos

Table 7.1 ImmSrc Encoding

ImmSrc	ExtImm	Description			
00	{24 0s} <i>Instr</i> _{7:0}	8-bit unsigned immediate for data-processing			
01	{20 0s} <i>Instr</i> _{11:0}	12-bit unsigned immediate for LDR/STR			
10	{6 Instr ₂₃ } Instr _{23:0} 00	24-bit signed immediate multiplied by 4 for B			

Processador monociclo completo

Figure 7.13 Complete single-cycle processor

Unidade de controle

Figure 7.14 Single-cycle control unit

Decodificador principal

Table 7.2 Main Decoder truth table

Op	Funct ₅	Funct ₀	Type	Branch	MemtoReg	MemW	ALUSrc	ImmSrc	RegW	RegSrc	ALUOp
00	0	X	DP Reg	0	0	0	0	XX	1	00	1
00	1	X	DP Imm	0	0	0	1	00	1	X0	1
01	X	0	STR	0	X	1	1	01	0	10	0
01	X	1	LDR	0	1	0	1	01	1	X0	0
10	X	X	В	1	0	0	1	10	0	X1	0

Decodificador da ULA

Table 7.3 ALU Decoder truth table

ALUOp	Funct _{4:1} (cmd)	$Funct_0$ (S)	Туре	$ALUControl_{1:0}$	$FlagW_{1:0}$
0	X	X	Not DP	00 (Add)	00
1	0100	0	ADD	00 (Add)	00
		1			11
	0010	0	SUB	01 (Sub)	00
		1			11
	0000	0	AND	10 (And)	00
		1			10
	1100	0	ORR	11 (Or)	00
		1			10

Dados e controles na instrução ORR

Caminho crítico na instrução LDR

Processador multiciclo

Figure 7.19 State elements with unified instruction/data memory

Figure 7.20 Fetch instruction from memory

Figure 7.21 Read one source from register file and extend the second source from the immediate field

Figure 7.22 Add base address to offset

Figure 7.23 Load data from memory

Figure 7.24 Write data back to register file

Execução da instrução LDR

Figure 7.25 Increment PC by 4

Execução da instrução LDR

Figure 7.26 Handle R15 reads and writes

Execução da instrução STR

Figure 7.27 Enhanced datapath for STR instruction

Processador multiciclo completo

Figure 7.30 Complete multicycle processor

Unidade de controle

(b) Decoder

(c) Conditional Logic

Maquina de Estados

State Datapath µOp Instr ←Mem[PC]; PC ← PC+4 Fetch ALUOut ← PC+4 Decode MemAdr ALUQut ← Rn + Imm MemRead Data ← Mem[ALUOut] MemWB Rd ← Data MemWrite Mem[ALUOut] ← Rd ALUOut ← Rn op Rm ExecuteR Executel ALUOut ← Rn op Imm Rd ← Al UOut ALUWB. Branch PC ← R15 + offset

Figure 7.41 Complete multicycle control FSM

Figure 7.42 Timing diagrams: (a) single-cycle processor and (b) pipelined processor

Figure 7.43 Abstract view of pipeline in operation

Figure 7.44 Datapaths: (a) single-cycle and (b) pipelined

Referências

Para saber mais e praticar...

- https://www.arm.com/resources
- https://salmanarif.bitbucket.io/visual/
- https://cpulator.01xz.net/?sys=arm
- https://azm.azerialabs.com/
- https://www.edaplayground.com/x/vcGc
- https://booksite.elsevier.com/9780128000564/lab_materials.php

Bibliografia

David Harris and Sarah Harris.

Digital Design and Computer Architecture: ARM® Edition.

Morgan Kaufmann, 2016.