
Microprocessadores e Microcontroladores (27146)

Microarquitetura

Prof. Ricardo Menotti (menotti@ufscar.br)

Atualizado em: 26 de abril de 2021

Departamento de Computação

Centro de Ciências Exatas e de Tecnologia

Universidade Federal de São Carlos

1

mailto:menotti@ufscar.br

Conteúdo

Considerações iniciais

Codificação das instruções

Processador monociclo

Processador multiciclo

Processador pipeline

Referências

2

Considerações iniciais

Subconjunto das instruções implementado [Harris and Harris(2016)]

• Processamento de dados: ADD, SUB, AND e ORR (com operandos em registradores e

imediatos, mas sem deslocamentos);

• Acesso à memória: LDR e STR (com offset imediato positivo).

• Salto: B.

3

Elementos de estado do processador ARM

Although the program counter (PC) is logically part of the register
file, it is read and written on every cycle independent of the normal regis-
ter file operation and is more naturally built as a stand-alone 32-bit reg-
ister. Its output, PC, points to the current instruction. Its input, PC′,
indicates the address of the next instruction.

The instruction memory has a single read port.1 It takes a 32-bit
instruction address input, A, and reads the 32-bit data (i.e., instruction)
from that address onto the read data output, RD.

The 15-element × 32-bit register file holds registers R0–R14 and has
an additional input to receive R15 from the PC. The register file has
two read ports and one write port. The read ports take 4-bit address
inputs, A1 and A2, each specifying one of 24= 16 registers as source
operands. They read the 32-bit register values onto read data outputs
RD1 and RD2, respectively. The write port takes a 4-bit address input,
A3; a 32-bit write data input, WD3; a write enable input, WE3; and a
clock. If the write enable is asserted, then the register file writes the data
into the specified register on the rising edge of the clock. A read of R15
returns the value from the PC plus 8, and writes to R15 must be specially
handled to update the PC because it is separate from the register file.

The data memory has a single read/write port. If its write enable, WE,
is asserted, then it writes data WD into address A on the rising edge of the
clock. If its write enable is 0, then it reads address A onto RD.

Treating the PC as part of the
register file complicates the
system design, and complexity
ultimately means more gates and
higher power consumption.
Most other architectures treat
the PC as a special register that
is only updated by branches,
not by ordinary data-processing
instructions. As described in
Section 6.7.6, ARM’s 64-bit
ARMv8 architecture also makes
the PC a special register separate
from the register file.

Resetting the PC

At the very least, the program
counter must have a reset signal
to initialize its value when the
processor turns on. ARM
processors normally initialize the
PC to 0x00000000 on reset, and
we start our programs there.

CLK

A RD

Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WEPCPC'

CLK

R15

CLK

Status

32 32 32 32

32

32

32

32

32

32

32

4

4

4

4 4

Figure 7.1 State elements of ARM processor

1 This is an oversimplification used to treat the instruction memory as a ROM; in most real
processors, the instruction memory must be writable so that the OS can load a new program
into memory. The multicycle microarchitecture described in Section 7.4 is more realistic in
that it uses a combined memory for instructions and data that can be both read and written.

7.1 Introduction 387

4

Tempo de execução de um programa

in Chapter 8. The added logic and registers are worthwhile; all commer-
cial high-performance processors use pipelining today.

We explore the details and trade-offs of these three microarchitec-
tures in the subsequent sections. At the end of the chapter, we briefly men-
tion additional techniques that are used to achieve even more speed in
modern high-performance microprocessors.

7.2 PERFORMANCE ANALYSIS
As we mentioned, a particular processor architecture can have many
microarchitectures with different cost and performance trade-offs. The
cost depends on the amount of hardware required and the implementa-
tion technology. Precise cost calculations require detailed knowledge of
the implementation technology but, in general, more gates and more
memory mean more dollars.

This section lays the foundation for analyzing performance. There
are many ways to measure the performance of a computer system, and
marketing departments are infamous for choosing the method that
makes their computer look fastest, regardless of whether the measure-
ment has any correlation to real-world performance. For example,
microprocessor makers often market their products based on the clock
frequency and the number of cores. However, they gloss over the com-
plications that some processors accomplish more work than others in
a clock cycle and that this varies from program to program. What is a
buyer to do?

The only gimmick-free way to measure performance is by measuring
the execution time of a program of interest to you. The computer that
executes your program fastest has the highest performance. The next best
choice is to measure the total execution time of a collection of programs
that are similar to those you plan to run; this may be necessary if you
have not written your program yet or if somebody else who does not have
your program is making the measurements. Such collections of programs
are called benchmarks, and the execution times of these programs are
commonly published to give some indication of how a processor
performs.

Equation 7.1 gives the execution time of a program,measured in seconds.

Execution Time =
!
#instructions

"
cycles

instruction

! "
seconds
cycle

! "
(7.1)

The number of instructions in a program depends on the processor archi-
tecture. Some architectures have complicated instructions that do more
work per instruction, thus reducing the number of instructions in a
program. However, these complicated instructions are often slower to

Dhrystone, CoreMark, and SPEC
are three popular benchmarks.
The first two are synthetic
benchmarks comprising
important common pieces of
programs. Dhrystone was
developed in 1984 and remains
commonly used for embedded
processors, although the code is
somewhat unrepresentative of
real-life programs. CoreMark
is an improvement over
Dhrystone and involves matrix
multiplications that exercise the
multiplier and adder, linked lists
to exercise the memory system,
state machines to exercise the
branch logic, and cyclical
redundancy checks that involve
many parts of the processor. Both
benchmarks are less than 16 KB
in size and do not stress the
instruction cache.

The SPEC CINT2006
benchmark from the Standard
Performance Evaluation
Corporation is composed of real
programs, including h264ref
(video compression), sjeng
(an artificial intelligence chess
player), hmmer (protein sequence
analysis), and gcc (a C compiler).
The benchmark is widely used for
high-performance processors
because it stresses the entire CPU
in a representative way.

7.2 Performance Analysis 389

5

Codificação das instruções

Processamento de dados (Op = 00)

The operation the instruction performs is encoded in the fields high-
lighted in blue: op (also called the opcode or operation code) and funct
or function code; the cond field encodes conditional execution based on
flags described in Section 6.3.2. Recall that cond= 11102 for uncondi-
tional instructions. op is 002 for data-processing instructions.

The operands are encoded in the three fields: Rn, Rd, and Src2. Rn is the
first source register and Src2 is the second source;Rd is the destination register.

Figure 6.17 shows the format of the funct field and the three varia-
tions of Src2 for data-processing instructions. funct has three subfields:
I, cmd, and S. The I-bit is 1 when Src2 is an immediate. The S-bit is 1
when the instruction sets the condition flags. For example, SUBS R1,
R9, #11 has S= 1. cmd indicates the specific data-processing instruction,
as given in Table B.1 in Appendix B. For example, cmd is 4 (01002) for
ADD and 2 (00102) for SUB.

Three variations of Src2 encoding allow the second source operand to
be (1) an immediate, (2) a register (Rm) optionally shifted by a constant
(shamt5), or (3) a register (Rm) shifted by another register (Rs). For the
latter two encodings of Src2, sh encodes the type of shift to perform, as
will be shown in Table 6.8.

Data-processing instructions have an unusual immediate representa-
tion involving an 8-bit unsigned immediate, imm8, and a 4-bit rotation,
rot. imm8 is rotated right by 2 × rot to create a 32-bit constant.
Table 6.7 gives example rotations and resulting 32-bit constants for
the 8-bit immediate 0xFF. This representation is valuable because it

cond op funct Rn Rd

Data-processing

4 bits 2 bits 6 bits 4 bits 4 bits

31:28 27:26 25:20 19:16 15:12 11:0

12 bits

Src2

Figure 6.16 Data-processing
instruction format

Rd is short for “register
destination.” Rn and Rm
unintuitively indicate the first
and second register sources.

Data-processing

cond op
00 cmd

31:28 27:26 24:21 19:16 15:12 11:0 411:7 6:5

shshamt5 0

11:8

Rn Rd

Rs sh

6:5

10

47

11:8

rot imm8

7:0

Src2 Rm

Rm

3:0

3:0

I

25

S

20

funct

I = 1

I = 0

Immediate

Register

Register-shifted
Register

Figure 6.17 Data-processing instruction format showing the funct field and Src2 variations

330 CHAPTER SIX Architecture

6

Acesso à memória (Op = 01)

before, cmd is 13 (11012), sh encodes the type of shift, Rm holds the value
to be shifted, and the shifted result is placed in Rd. This instruction uses
the register-shifted register addressing mode, where one register (Rm) is
shifted by the amount held in a second register (Rs). Because the least
significant 8 bits of Rs are used, Rm can be shifted by up to 255 positions.
For example, if Rs holds the value 0xF001001C, the shift amount is 0x1C
(28). A logical shift by more than 31 bits pushes all the bits off the end
and produces all 0's. Rotate is cyclical, so a rotate by 50 bits is equivalent
to a rotate by 18 bits.

6 . 4 . 2 Memory Instructions

Memory instructions use a format similar to that of data-processing
instructions, with the same six overall fields: cond, op, funct, Rn, Rd,
and Src2, as shown in Figure 6.22. However, memory instructions use a
different funct field encoding, have two variations of Src2, and use an
op of 012. Rn is the base register, Src2 holds the offset, and Rd is the des-
tination register in a load or the source register in a store. The offset is
either a 12-bit unsigned immediate (imm12) or a register (Rm) that is
optionally shifted by a constant (shamt5). funct is composed of six con-
trol bits: I, P, U, B, W, and L. The I (immediate) and U (add) bits deter-
mine whether the offset is an immediate or register and whether it should
be added or subtracted, according to Table 6.9. The P (pre-index) and W
(writeback) bits specify the index mode according to Table 6.10. The L
(load) and B (byte) bits specify the type of memory operation according
to Table 6.11.

Memory

cond op Rn Rd

31:28 27:26 25:20 19:16 15:12 11:0

11:7

shamt5 sh
6:5

1

4Src2

Rm

3:001 I L

funct

I = 0

I = 1

11:0

imm12

WBUP

Immediate

Register

Figure 6.22 Memory instruction format for LDR, STR, LDRB, and STRB

Table 6.9 Offset type control bits for memory instructions

Meaning
Bit I U

0 Immediate offset in Src2 Subtract offset from base

1 Register offset in Src2 Add offset to base

Table 6.10 Index mode control
bits for memory instructions

P W Index Mode

0 0 Post-index

0 1 Not supported

1 0 Offset

1 1 Pre-index

Table 6.11 Memory operation type
control bits for memory instructions

L B Instruction

0 0 STR

0 1 STRB

1 0 LDR

1 1 LDRB

6.4 Machine Language 333

7

Desvios (Op = 10)

Example 6.3 TRANSLATING MEMORY INSTRUCTIONS INTO MACHINE
LANGUAGE

Translate the following assembly language statement into machine language.

STR R11, [R5], #-26

Solution: STR is a memory instruction, so it has an op of 012. According to
Table 6.11, L= 0 and B= 0 for STR. The instruction uses post-indexing,
so according to Table 6.10, P= 0 and W= 0. The immediate offset is subtracted
from the base, so I = 0 and U= 0. Figure 6.23 shows each field and the machine
code. Hence, the machine language instruction is 0xE405B01A.

6 . 4 . 3 Branch Instructions

Branch instructions use a single 24-bit signed immediate operand, imm24,
as shown in Figure 6.24. As with data-processing and memory instruc-
tions, branch instructions begin with a 4-bit condition field and a 2-bit
op, which is 102. The funct field is only 2 bits. The upper bit of funct is
always 1 for branches. The lower bit, L, indicates the type of branch
operation: 1 for BL and 0 for B. The remaining 24-bit two’s complement
imm24 field is used to specify an instruction address relative to PC + 8.

Code Example 6.28 shows the use of the branch if less than (BLT)
instruction and Figure 6.25 shows the machine code for that instruction.
The branch target address (BTA) is the address of the next instruction to
execute if the branch is taken. The BLT instruction in Figure 6.25 has a
BTA of 0x80B4, the instruction address of the THERE label.

The 24-bit immediate field gives the number of instructions between
the BTA and PC + 8 (two instructions past the branch). In this case, the
value in the immediate field (imm24) of BLT is 3 because the BTA
(0x80B4) is three instructions past PC + 8 (0x80A8).

cond op IPUBWL

Field Values
31:28 27:26 25:20 19:16 15:12

00000002

Rn Rd

5 11
11:0

26

Machine CodeAssembly Code

STR R11, [R5], #-26

imm12 E 4 0 5 B

31:28 27:26 25:20 19:16 15:12

011110 000000 0101 1011
11:0

0000 0001 1010

0 1 A

01211102

Figure 6.23 Machine code for the memory instruction of Example 6.3

cond imm24

Branch

23:025:2427:2631:28

1L
op
10

funct

Figure 6.24 Branch instruction format

Notice the counterintuitive
encoding of post-indexing
mode.

334 CHAPTER SIX Architecture

8

Processador monociclo

Execução da instrução LDR

are emphasized in black (or blue, for new control signals), whereas
the hardware that has already been studied is shown in gray. The status
register is part of the controller and will be omitted while we focus on
the datapath.

The program counter contains the address of the instruction to exe-
cute. The first step is to read this instruction from instruction memory.
Figure 7.2 shows that the PC is simply connected to the address input
of the instruction memory. The instruction memory reads out, or fetches,
the 32-bit instruction, labeled Instr.

The processor’s actions depend on the specific instruction that was
fetched. First, we will work out the datapath connections for the LDR
instruction with positive immediate offset. Then, we will consider how
to generalize the datapath to handle other instructions.

LDR
For the LDR instruction, the next step is to read the source register con-
taining the base address. This register is specified in the Rn field of the
instruction, Instr19:16. These bits of the instruction are connected to the
address input of one of the register file ports, A1, as shown in
Figure 7.3. The register file reads the register value onto RD1.

CLK

A RD

Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE
PCPC'

Instr

CLK

R15

Figure 7.2 Fetch instruction from memory

CLK

A RD

Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE
PCPC'

Instr 19:16

CLK

R15

RA1

Figure 7.3 Read source operand from register file

7.3 Single-Cycle Processor 391

9

Execução da instrução LDR

are emphasized in black (or blue, for new control signals), whereas
the hardware that has already been studied is shown in gray. The status
register is part of the controller and will be omitted while we focus on
the datapath.

The program counter contains the address of the instruction to exe-
cute. The first step is to read this instruction from instruction memory.
Figure 7.2 shows that the PC is simply connected to the address input
of the instruction memory. The instruction memory reads out, or fetches,
the 32-bit instruction, labeled Instr.

The processor’s actions depend on the specific instruction that was
fetched. First, we will work out the datapath connections for the LDR
instruction with positive immediate offset. Then, we will consider how
to generalize the datapath to handle other instructions.

LDR
For the LDR instruction, the next step is to read the source register con-
taining the base address. This register is specified in the Rn field of the
instruction, Instr19:16. These bits of the instruction are connected to the
address input of one of the register file ports, A1, as shown in
Figure 7.3. The register file reads the register value onto RD1.

CLK

A RD

Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE
PCPC'

Instr

CLK

R15

Figure 7.2 Fetch instruction from memory

CLK

A RD

Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE
PCPC'

Instr 19:16

CLK

R15

RA1

Figure 7.3 Read source operand from register file

7.3 Single-Cycle Processor 391

10

Execução da instrução LDR

The LDR instruction also requires an offset. The offset is stored in the
immediate field of the instruction, Instr11:0. It is an unsigned value, so it
must be zero-extended to 32 bits, as shown in Figure 7.4. The 32-bit value
is called ExtImm. Zero extension simply means prepending leading zeros:
ImmExt31:12= 0 and ImmExt11:0= Instr11:0.

The processor must add the base address to the offset to find the
address to read from memory. Figure 7.5 introduces an ALU to perform
this addition. The ALU receives two operands, SrcA and SrcB. SrcA
comes from the register file, and SrcB comes from the extended immedi-
ate. The ALU can perform many operations, as was described in Section
5.2.4. The 2-bit ALUControl signal specifies the operation. The ALU gen-
erates a 32-bit ALUResult. For an LDR instruction, ALUControl should
be set to 00 to perform addition. ALUResult is sent to the data memory
as the address to read, as shown in Figure 7.5.

ExtImm

CLK

A RD

Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE
PCPC'

Instr 19:16

11:0

CLK

R15

RA1

Extend

Figure 7.4 Zero-extend the immediate

ExtImm

CLK

A RD

Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE
PCPC'

Instr 19:16

11:0

SrcB

ALUResult

SrcA

CLK

AL
U

R15

RA1

Extend

ALUControl
00

Figure 7.5 Compute memory address

392 CHAPTER SEVEN Microarchitecture

11

Execução da instrução LDR

The LDR instruction also requires an offset. The offset is stored in the
immediate field of the instruction, Instr11:0. It is an unsigned value, so it
must be zero-extended to 32 bits, as shown in Figure 7.4. The 32-bit value
is called ExtImm. Zero extension simply means prepending leading zeros:
ImmExt31:12= 0 and ImmExt11:0= Instr11:0.

The processor must add the base address to the offset to find the
address to read from memory. Figure 7.5 introduces an ALU to perform
this addition. The ALU receives two operands, SrcA and SrcB. SrcA
comes from the register file, and SrcB comes from the extended immedi-
ate. The ALU can perform many operations, as was described in Section
5.2.4. The 2-bit ALUControl signal specifies the operation. The ALU gen-
erates a 32-bit ALUResult. For an LDR instruction, ALUControl should
be set to 00 to perform addition. ALUResult is sent to the data memory
as the address to read, as shown in Figure 7.5.

ExtImm

CLK

A RD

Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE
PCPC'

Instr 19:16

11:0

CLK

R15

RA1

Extend

Figure 7.4 Zero-extend the immediate

ExtImm

CLK

A RD

Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE
PCPC'

Instr 19:16

11:0

SrcB

ALUResult

SrcA

CLK

AL
U

R15

RA1

Extend

ALUControl
00

Figure 7.5 Compute memory address

392 CHAPTER SEVEN Microarchitecture

12

Execução da instrução LDR

The data is read from the data memory onto the ReadData bus and
then written back to the destination register at the end of the cycle, as
shown in Figure 7.6. Port 3 of the register file is the write port. The des-
tination register for the LDR instruction is specified in the Rd field,
Instr15:12, which is connected to the port 3 address input, A3, of the reg-
ister file. The ReadData bus is connected to the port 3 write data input,
WD3, of the register file. A control signal called RegWrite is connected
to the port 3 write enable input, WE3, and is asserted during an LDR
instruction so that the data value is written into the register file. The write
takes place on the rising edge of the clock at the end of the cycle.

While the instruction is being executed, the processor must compute
the address of the next instruction, PC′. Because instructions are 32 bits
(4 bytes), the next instruction is at PC + 4. Figure 7.7 uses an adder to

ExtImm

CLK

A RD

Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE
PCPC'

Instr 19:16

15:12

11:0

SrcB

ALUResult ReadData

SrcA

CLK

AL
U

R15

RA1

Extend

RegWrite ALUControl
1 00

Figure 7.6 Write data back to register file

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE
PCPC'

Instr 19:16

15:12

11:0

SrcB

ALUResult ReadData

SrcA

PCPlus4

CLK

AL
U

R15

RA1

Extend

RegWrite ALUControl
1 00

Figure 7.7 Increment program counter

7.3 Single-Cycle Processor 393

13

Execução da instrução LDR

The data is read from the data memory onto the ReadData bus and
then written back to the destination register at the end of the cycle, as
shown in Figure 7.6. Port 3 of the register file is the write port. The des-
tination register for the LDR instruction is specified in the Rd field,
Instr15:12, which is connected to the port 3 address input, A3, of the reg-
ister file. The ReadData bus is connected to the port 3 write data input,
WD3, of the register file. A control signal called RegWrite is connected
to the port 3 write enable input, WE3, and is asserted during an LDR
instruction so that the data value is written into the register file. The write
takes place on the rising edge of the clock at the end of the cycle.

While the instruction is being executed, the processor must compute
the address of the next instruction, PC′. Because instructions are 32 bits
(4 bytes), the next instruction is at PC + 4. Figure 7.7 uses an adder to

ExtImm

CLK

A RD

Instruction
Memory

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE
PCPC'

Instr 19:16

15:12

11:0

SrcB

ALUResult ReadData

SrcA

CLK

AL
U

R15

RA1

Extend

RegWrite ALUControl
1 00

Figure 7.6 Write data back to register file

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE
PCPC'

Instr 19:16

15:12

11:0

SrcB

ALUResult ReadData

SrcA

PCPlus4

CLK

AL
U

R15

RA1

Extend

RegWrite ALUControl
1 00

Figure 7.7 Increment program counter

7.3 Single-Cycle Processor 393

14

Execução da instrução LDR

increment the PC by 4. The new address is written into the program coun-
ter on the next rising edge of the clock. This completes the datapath for
the LDR instruction, except for a sneaky case of the base or destination
register being R15.

Recall from Section 6.4.6 that in the ARM architecture, reading reg-
ister R15 returns PC+ 8. Therefore, another adder is needed to further
increment the PC and pass this sum to the R15 port of the register file.
Similarly, writing register R15 updates the PC. Therefore, PC′ may come
from the result of the instruction (ReadData) rather than PCPlus4. A
multiplexer chooses between these two possibilities. The PCSrc control
signal is set to 0 to choose PCPlus4 or 1 to choose ReadData. These
PC-related features are highlighted in Figure 7.8.

STR
Next, let us extend the datapath to also handle the STR instruction. Like
LDR, STR reads a base address from port 1 of the register file and zero-
extends the immediate. The ALU adds the base address to the immediate
to find the memory address. All of these functions are already supported
in the datapath.

The STR instruction also reads a second register from the register file
and writes it to the data memory. Figure 7.9 shows the new connections
for this function. The register is specified in the Rd field, Instr15:12, which
is connected to the A2 port of the register file. The register value is read
onto the RD2 port. It is connected to the write data (WD) port of the data
memory. The write enable port of the data memory, WE, is controlled
by MemWrite. For an STR instruction: MemWrite= 1 to write the data
to memory; ALUControl= 00 to add the base address and offset; and
RegWrite= 0, because nothing should be written to the register file.
Note that data is still read from the address given to the data memory,
but that this ReadData is ignored because RegWrite= 0.

ExtImm

CLK

A RD

Instruction
Memory

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE
PC1

0
PC'

Instr 19:16

15:12

11:0

SrcB

ALUResult ReadData

SrcA

PCPlus4

CLK

AL
U

PCPlus8
R15+

4

RA1

Extend

RegWritePCSrc ALUControl
1 1 00

+

Figure 7.8 Read or write program counter as R15

394 CHAPTER SEVEN Microarchitecture

15

Execução da instrução STR

Data-Processing Instructions with Immediate Addressing
Next, consider extending the datapath to handle the data-processing
instructions, ADD, SUB, AND, and ORR, using the immediate addressing
mode. All of these instructions read a source register from the register file
and an immediate from the low bits of the instruction, perform some ALU
operation on them, and write the result back to a third register. They dif-
fer only in the specific ALU operation. Hence, they can all be handled
with the same hardware using different ALUControl signals. As described
in Section 5.2.4, ALUControl is 00 for ADD, 01 for SUB, 10 for AND, or 11
for ORR. The ALU also produces four flags, ALUFlags3:0 (Zero, Negative,
Carry, oVerflow), that are sent back to the controller.

Figure 7.10 shows the enhanced datapath handling data-processing
instructions with an immediate second source. Like LDR, the datapath
reads the first ALU source from port 1 of the register file and extends
the immediate from the low bits of Instr. However, data-processing

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE
PC1

0
PC'

Instr 19:16

15:12

11:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

CLK

AL
U

PCPlus8
R15+

4

RA1

RA2

Extend

RegWritePCSrc MemWriteALUControl
0 0 00 1

Figure 7.9 Write data to memory for STR instruction

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE

1
0

PC1
0

PC'

Instr 19:16

15:12

11:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

A
LU

F
lag

s

CLK

AL
U

PCPlus8
R15+

4

RA1

RA2

Extend

RegWritePCSrc ImmSrc MemWrite MemtoRegALUControl
0 1 0 varies 0 0

Figure 7.10 Datapath enhancements for data-processing instructions with immediate addressing

7.3 Single-Cycle Processor 395

16

Execução das instruções de processamento de dados com imediatos

Data-Processing Instructions with Immediate Addressing
Next, consider extending the datapath to handle the data-processing
instructions, ADD, SUB, AND, and ORR, using the immediate addressing
mode. All of these instructions read a source register from the register file
and an immediate from the low bits of the instruction, perform some ALU
operation on them, and write the result back to a third register. They dif-
fer only in the specific ALU operation. Hence, they can all be handled
with the same hardware using different ALUControl signals. As described
in Section 5.2.4, ALUControl is 00 for ADD, 01 for SUB, 10 for AND, or 11
for ORR. The ALU also produces four flags, ALUFlags3:0 (Zero, Negative,
Carry, oVerflow), that are sent back to the controller.

Figure 7.10 shows the enhanced datapath handling data-processing
instructions with an immediate second source. Like LDR, the datapath
reads the first ALU source from port 1 of the register file and extends
the immediate from the low bits of Instr. However, data-processing

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE
PC1

0
PC'

Instr 19:16

15:12

11:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

CLK

AL
U

PCPlus8
R15+

4

RA1

RA2

Extend

RegWritePCSrc MemWriteALUControl
0 0 00 1

Figure 7.9 Write data to memory for STR instruction

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD
Data

Memory
WD

WE

1
0

PC1
0

PC'

Instr 19:16

15:12

11:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

A
LU

F
lag

s

CLK

AL
U

PCPlus8
R15+

4

RA1

RA2

Extend

RegWritePCSrc ImmSrc MemWrite MemtoRegALUControl
0 1 0 varies 0 0

Figure 7.10 Datapath enhancements for data-processing instructions with immediate addressing

7.3 Single-Cycle Processor 395

17

Execução das instruções de processamento de dados com registradores

instructions use only an 8-bit immediate rather than a 12-bit immediate.
Therefore, we provide the ImmSrc control signal to the Extend block.
When it is 0, ExtImm is zero-extended from Instr7:0 for data-processing
instructions. When it is 1, ExtImm is zero-extended from Instr11:0 for
LDR or STR.

For LDR, the register file received its write data from the data
memory. However, data-processing instructions write ALUResult to the
register file. Therefore, we add another multiplexer to choose between
ReadData and ALUResult. We call its output Result. The multiplexer is
controlled by another new signal, MemtoReg. MemtoReg is 0 for data-
processing instructions to choose Result from ALUResult; it is 1 for LDR
to choose ReadData. We do not care about the value of MemtoReg for
STR because STR does not write the register file.

Data-Processing Instructions with Register Addressing
Data-processing instructions with register addressing receive their
second source from Rm, specified by Instr3:0, rather than from the
immediate. Thus, we must add multiplexers on the inputs of the
register file and ALU to select this second source register, as shown in
Figure 7.11.

RA2 is chosen from the Rd field (Instr15:12) for STR and the Rm field
(Instr3:0) for data-processing instructions with register addressing based
on the RegSrc control signal. Similarly, based on the ALUSrc control sig-
nal, the second source to the ALU is selected from ExtImm for instruc-
tions using immediates and from the register file for data-processing
instructions with register addressing.

B
Finally, we extend the datapath to handle the B instruction, as shown in
Figure 7.12. The branch instruction adds a 24-bit immediate to PC + 8
and writes the result back to the PC. The immediate is multiplied by 4

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

0
1

A RD
Data

Memory
WD

WE

1
0

PC1
0

PC'

Instr 19:16

15:12

11:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

A
LU

F
lag

s

CLK

AL
U

PCPlus8
R15

3:0

+

4

RA1

RA2

Extend

0
1

RegSrc RegWritePCSrc ImmSrc MemWrite MemtoRegALUControlALUSrc
0 1 X 0 varies 0 00

Figure 7.11 Datapath enhancements for data-processing instructions with register addressing

396 CHAPTER SEVEN Microarchitecture

18

Execução da instrução B

and sign extended. Therefore, the Extend logic needs yet another mode.
ImmSrc is increased to 2 bits, with the encoding given in Table 7.1.

PC + 8 is read from the first port of the register file. Therefore, a mul-
tiplexer is needed to choose R15 as the RA1 input. This multiplexer is
controlled by another bit of RegSrc, choosing Instr19:16 for most instruc-
tions but 15 for B.

MemtoReg is set to 0 and PCSrc is set to 1 to select the new PC from
ALUResult for the branch.

This completes the design of the single-cycle processor datapath. We
have illustrated not only the design itself but also the design process in which
the state elements are identified, and the combinational logic connecting the
state elements is systematically added. In the next section, we consider how
to compute the control signals that direct the operation of our datapath.

7 . 3 . 2 Single-Cycle Control

The control unit computes the control signals based on the cond, op,
and funct fields of the instruction (Instr31:28, Instr27:26, and Instr25:20)
as well as the flags and whether the destination register is the PC. The con-
troller also stores the current status flags and updates them appropriately.
Figure 7.13 shows the entire single-cycle processor with the control unit
attached to the datapath.

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

0
1

A RD
Data

Memory
WD

WE

1
0

PC1
0

PC'

Instr

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

A
LU

F
lag

s

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1

RA2

Extend

0
1

0
1

RegSrc RegWritePCSrc ImmSrc MemWrite MemtoRegALUControlALUSrc
11 0 10 1 00 0 0x

Figure 7.12 Datapath enhancements for B instruction

Table 7.1 ImmSrc Encoding

ImmSrc ExtImm Description

00 {24 0s} Instr7:0 8-bit unsigned immediate for data-processing

01 {20 0s} Instr11:0 12-bit unsigned immediate for LDR/STR

10 {6 Instr23} Instr23:0 00 24-bit signed immediate multiplied by 4 for B

7.3 Single-Cycle Processor 397

19

Resumo das opções de imediatos

and sign extended. Therefore, the Extend logic needs yet another mode.
ImmSrc is increased to 2 bits, with the encoding given in Table 7.1.

PC+ 8 is read from the first port of the register file. Therefore, a mul-
tiplexer is needed to choose R15 as the RA1 input. This multiplexer is
controlled by another bit of RegSrc, choosing Instr19:16 for most instruc-
tions but 15 for B.

MemtoReg is set to 0 and PCSrc is set to 1 to select the new PC from
ALUResult for the branch.

This completes the design of the single-cycle processor datapath. We
have illustrated not only the design itself but also the design process in which
the state elements are identified, and the combinational logic connecting the
state elements is systematically added. In the next section, we consider how
to compute the control signals that direct the operation of our datapath.

7 . 3 . 2 Single-Cycle Control

The control unit computes the control signals based on the cond, op,
and funct fields of the instruction (Instr31:28, Instr27:26, and Instr25:20)
as well as the flags and whether the destination register is the PC. The con-
troller also stores the current status flags and updates them appropriately.
Figure 7.13 shows the entire single-cycle processor with the control unit
attached to the datapath.

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

0
1

A RD
Data

Memory
WD

WE

1
0

PC1
0

PC'

Instr

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

A
LU

F
lag

s

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1

RA2

Extend

0
1

0
1

RegSrc RegWritePCSrc ImmSrc MemWrite MemtoRegALUControlALUSrc
11 0 10 1 00 0 0x

Figure 7.12 Datapath enhancements for B instruction

Table 7.1 ImmSrc Encoding

ImmSrc ExtImm Description

00 {24 0s} Instr7:0 8-bit unsigned immediate for data-processing

01 {20 0s} Instr11:0 12-bit unsigned immediate for LDR/STR

10 {6 Instr23} Instr23:0 00 24-bit signed immediate multiplied by 4 for B

7.3 Single-Cycle Processor 397

20

Processador monociclo completo

Figure 7.14 shows a detailed diagram of the controller. We partition
the controller into two main parts: the Decoder, which generates control
signals based on Instr, and the Conditional Logic, which maintains
the status flags and only enables updates to architectural state when the
instruction should be conditionally executed. The Decoder, shown in
Figure 7.14(b), is composed of a Main Decoder that produces most of
the control signals, an ALU Decoder that uses the Funct field to determine
the type of data-processing instruction, and PC Logic to determine
whether the PC needs updating due to a branch or a write to R15.

The behavior of the Main Decoder is given by the truth table
in Table 7.2. The Main Decoder determines the type of instruction:
Data-Processing Register, Data-Processing Immediate, STR, LDR, or B.
It produces the appropriate control signals to the datapath. It sends
MemtoReg, ALUSrc, ImmSrc1:0, and RegSrc1:0 directly to the datapath.
However, the write enablesMemW and RegWmust pass through the Con-
ditional Logic before becoming datapath signalsMemWrite and RegWrite.
These write enables may be killed (reset to 0) by the Conditional Logic if
the condition is not satisfied. The Main Decoder also generates the Branch
and ALUOp signals, which are used within the controller to indicate
that the instruction is B or data-processing, respectively. The logic for the
Main Decoder can be developed from the truth table using your favorite
techniques for combinational logic design.

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

0
1

A RD
Data

Memory
WD

WE

1
0

PC1
0

PC'

Instr

19:16

15:12

23:0

25:20

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

27:26

ImmSrc

PCSrc

MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

ALUFlags

CLK

ALUControl

AL
U

PCPlus8
R15

3:0

Cond
31:28

Flags

15:12 Rd

+

4

15
RA1

RA2

0 1

Extend

0
1

0
1

R
e

gS
rc

Figure 7.13 Complete single-cycle processor

398 CHAPTER SEVEN Microarchitecture

21

Unidade de controle

Thebehaviorof theALUDecoder is givenby the truth tables inTable 7.3.
For data-processing instructions, the ALU Decoder chooses ALUControl
based on the type of instruction (ADD, SUB, AND, ORR). Moreover, it asserts
FlagW to update the status flags when the S-bit is set. Note that ADD and
SUB update all flags, whereas AND and ORR only update the N and Z flags,
so two bits of FlagW are needed: FlagW1 for updating N and Z (Flags3:2),
and FlagW0 for updating C and V (Flags1:0). FlagW1:0 is killed by the
Conditional Logic when the condition is not satisfied (CondEx= 0).

ImmSrc1:0

MemW

MemtoReg
ALUSrc

ALUControl1:0

Decoder

RegW

Cond3:0

Op1:0

Funct5:0

Rd3:0

RegSrc1:0

FlagW1:0

ALUFlags3:0

MemWrite
RegWrite

C
onditional

Logic

PCSrcPCS

Main
Decoder

ALUOp

ALU
Decoder

Op1:0

Funct5:0

Rd3:0

5,0

PC Logic PCS

FlagW1:0

ALUControl 1:0

Branch

ImmSrc1:0

MemtoReg
ALUSrc

RegSrc1:0

MemW
RegW

Cond 3:0

Flags3:2

CLK

CLK
ALUFlags 3:0

Flags1:0

[3:2]

[1:0]

FlagWrite1:0

[1]

[0]

C
ondition
C

heck

FlagW 1:0

PCSrc

MemWrite

RegWrite

C
o

ndE
x

PCS

MemW

RegW

(c) Conditional Logic

4:0

CLK

(a) Control Unit

Decoder(b)

Figure 7.14 Single-cycle control unit

7.3 Single-Cycle Processor 399

22

Decodificador principal

The PC Logic checks if the instruction is a write to R15 or a branch
such that the PC should be updated. The logic is:

PCS = ððRd == 15Þ & RegWÞ jBranch

PCS may be killed by the Conditional Logic before it is sent to the
datapath as PCSrc.

The Conditional Logic, shown in Figure 7.14(c), determines whether
the instruction should be executed (CondEx) based on the cond field and
the current values of the N, Z, C, and V flags (Flags3:0), as was described
in Table 6.3. If the instruction should not be executed, the write enables
and PCSrc are forced to 0 so that the instruction does not change the
architectural state. The Conditional Logic also updates some or all of
the flags from the ALUFlags when FlagW is asserted by the ALU Decoder
and the instruction’s condition is satisfied (CondEx = 1).

Table 7.2 Main Decoder truth table

Op Funct5 Funct0 Type Branch MemtoReg MemW ALUSrc ImmSrc RegW RegSrc ALUOp

00 0 X DP Reg 0 0 0 0 XX 1 00 1

00 1 X DP Imm 0 0 0 1 00 1 X0 1

01 X 0 STR 0 X 1 1 01 0 10 0

01 X 1 LDR 0 1 0 1 01 1 X0 0

10 X X B 1 0 0 1 10 0 X1 0

Table 7.3 ALU Decoder truth table

ALUOp
Funct4:1
(cmd)

Funct0
(S) Type ALUControl1:0 FlagW1:0

0 X X Not DP 00 (Add) 00

1 0100 0 ADD 00 (Add) 00

1 11

0010 0 SUB 01 (Sub) 00

1 11

0000 0 AND 10 (And) 00

1 10

1100 0 ORR 11 (Or) 00

1 10

400 CHAPTER SEVEN Microarchitecture

23

Decodificador da ULA

The PC Logic checks if the instruction is a write to R15 or a branch
such that the PC should be updated. The logic is:

PCS = ððRd == 15Þ & RegWÞ jBranch

PCS may be killed by the Conditional Logic before it is sent to the
datapath as PCSrc.

The Conditional Logic, shown in Figure 7.14(c), determines whether
the instruction should be executed (CondEx) based on the cond field and
the current values of the N, Z, C, and V flags (Flags3:0), as was described
in Table 6.3. If the instruction should not be executed, the write enables
and PCSrc are forced to 0 so that the instruction does not change the
architectural state. The Conditional Logic also updates some or all of
the flags from the ALUFlags when FlagW is asserted by the ALU Decoder
and the instruction’s condition is satisfied (CondEx = 1).

Table 7.2 Main Decoder truth table

Op Funct5 Funct0 Type Branch MemtoReg MemW ALUSrc ImmSrc RegW RegSrc ALUOp

00 0 X DP Reg 0 0 0 0 XX 1 00 1

00 1 X DP Imm 0 0 0 1 00 1 X0 1

01 X 0 STR 0 X 1 1 01 0 10 0

01 X 1 LDR 0 1 0 1 01 1 X0 0

10 X X B 1 0 0 1 10 0 X1 0

Table 7.3 ALU Decoder truth table

ALUOp
Funct4:1
(cmd)

Funct0
(S) Type ALUControl1:0 FlagW1:0

0 X X Not DP 00 (Add) 00

1 0100 0 ADD 00 (Add) 00

1 11

0010 0 SUB 01 (Sub) 00

1 11

0000 0 AND 10 (And) 00

1 10

1100 0 ORR 11 (Or) 00

1 10

400 CHAPTER SEVEN Microarchitecture

24

Dados e controles na instrução ORR

Example 7.1 SINGLE-CYCLE PROCESSOR OPERATION

Determine the values of the control signals and the portions of the datapath that
are used when executing an ORR instruction with register addressing mode.

Solution: Figure 7.15 illustrates the control signals and flow of data during execu-
tion of the ORR instruction. The PC points to the memory location holding the
instruction, and the instruction memory returns this instruction.

The main flow of data through the register file and ALU is represented
with a heavy blue line. The register file reads the two source operands specified
by Instr19:16 and Instr3:0, so RegSrc must be 00. SrcB should come from
the second port of the register file (not ExtImm), so ALUSrc must be 0.
The ALU performs a bitwise OR operation, so ALUControl must be 11. The
result comes from the ALU, so MemtoReg is 0. The result is written to the register
file, so RegWrite is 1. The instruction does not write memory, so MemWrite= 0.

The updating of PC with PCPlus4 is shown with a heavy gray line. PCSrc is 0 to
select the incremented PC.

Note that data certainly does flow through the nonhighlighted paths, but that the
value of that data is unimportant for this instruction. For example, the immediate
is extended and data is read from memory, but these values do not influence the
next state of the system.

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

0
1

A RD
Data

Memory
WD

WE

1
0

PC1
0

PC'

In
str

19:16

15:12

23:0

25:20

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

27:26

ImmSrc

PCSrc

MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

ALUFlags

CLK

ALUControl

AL
U

PCPlus8
R15

3:0

Cond
31:28

Flags

15:12 Rd

+

4

15
RA1

RA2

0 1

Extend

0
1

0
1

R
e

gS
rc

000 1 XX 0 11 0 0

Figure 7.15 Control signals and data flow while executing an ORR instruction

7.3 Single-Cycle Processor 401

25

Caminho cŕıtico na instrução LDR

The numerical values of these times will depend on the specific implemen-
tation technology.

Other instructions have shorter critical paths. For example, data-
processing instructions do not need to access data memory. However,
we are disciplining ourselves to synchronous sequential design, so the
clock period is constant and must be long enough to accommodate the
slowest instruction.

Example 7.4 SINGLE-CYCLE PROCESSOR PERFORMANCE

Ben Bitdiddle is contemplating building the single-cycle processor in a 16-nm
CMOS manufacturing process. He has determined that the logic elements have
the delays given in Table 7.5. Help him compute the execution time for a program
with 100 billion instructions.

Solution: According to Equation 7.3, the cycle time of the single-cycle processor
is Tc1 = 40 + 2(200) + 70 + 100 + 120 + 2(25) + 60 = 840 ps. According to
Equation 7.1, the total execution time is T1= (100 × 109 instruction) (1 cycle/
instruction) (840 × 10−12 s/cycle) = 84 seconds.

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

0
1

A RD
Data

Memory
WD

WE

1
0

PC1
0

PC'

In
str

19:16

15:12

23:0

25:20

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

27:26

ImmSrc

PCSrc

MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

ALUFlags

CLK

ALUControl

AL
U

PCPlus8
R15

3:0

Cond
31:28

Flags

15:12

+

4

15
RA1

RA2

0 1

Extend

0
1

0
1

R
e

gS
rc

00 1 01 1

1

00 0 10

Rd

Figure 7.18 LDR critical path

7.3 Single-Cycle Processor 405

26

Processador multiciclo

Execução da instrução LDR

7 . 4 . 1 Multicycle Datapath

Again, we begin our design with the memory and architectural state of the
processor, as shown in Figure 7.19. In the single-cycle design, we used sepa-
rate instruction and data memories because we needed to read the instruc-
tion memory and read or write the data memory all in one cycle. Now, we
choose to use a combined memory for both instructions and data. This is
more realistic, and it is feasible because we can read the instruction in one
cycle, then read or write the data in a separate cycle. The PC and register file
remain unchanged. As with the single-cycle processor, we gradually build
the datapath by adding components to handle each step of each instruction.

The PC contains the address of the instruction to execute. The first
step is to read this instruction from instruction memory. Figure 7.20
shows that the PC is simply connected to the address input of the
memory. The instruction is read and stored in a new nonarchitectural
instruction register (IR) so that it is available for future cycles. The IR
receives an enable signal, called IRWrite, which is asserted when the IR
should be loaded with a new instruction.

LDR
As we did with the single-cycle processor, we first work out the datapath
connections for the LDR instruction. After fetching LDR, the next step is

CLK

A
RD

Instr / Data
Memory

PCPC'

WD

WE

CLK

EN

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

Figure 7.19 State elements with unified instruction/data memory

CLK

A
RD

Instr / Data
Memory

PCPC'
Instr

CLK

WD

WE

CLK

EN
EN

IRWrite

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

Figure 7.20 Fetch instruction from memory

7.4 Multicycle Processor 407

27

Execução da instrução LDR

7 . 4 . 1 Multicycle Datapath

Again, we begin our design with the memory and architectural state of the
processor, as shown in Figure 7.19. In the single-cycle design, we used sepa-
rate instruction and data memories because we needed to read the instruc-
tion memory and read or write the data memory all in one cycle. Now, we
choose to use a combined memory for both instructions and data. This is
more realistic, and it is feasible because we can read the instruction in one
cycle, then read or write the data in a separate cycle. The PC and register file
remain unchanged. As with the single-cycle processor, we gradually build
the datapath by adding components to handle each step of each instruction.

The PC contains the address of the instruction to execute. The first
step is to read this instruction from instruction memory. Figure 7.20
shows that the PC is simply connected to the address input of the
memory. The instruction is read and stored in a new nonarchitectural
instruction register (IR) so that it is available for future cycles. The IR
receives an enable signal, called IRWrite, which is asserted when the IR
should be loaded with a new instruction.

LDR
As we did with the single-cycle processor, we first work out the datapath
connections for the LDR instruction. After fetching LDR, the next step is

CLK

A
RD

Instr / Data
Memory

PCPC'

WD

WE

CLK

EN

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

Figure 7.19 State elements with unified instruction/data memory

CLK

A
RD

Instr / Data
Memory

PCPC'
Instr

CLK

WD

WE

CLK

EN
EN

IRWrite

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

Figure 7.20 Fetch instruction from memory

7.4 Multicycle Processor 407

28

Execução da instrução LDR

to read the source register containing the base address. This register is
specified in the Rn field, Instr19:16. These bits of the instruction are con-
nected to address input A1 of the register file, as shown in Figure 7.21.
The register file reads the register into RD1. This value is stored in
another nonarchitectural register, A.

The LDR instruction also requires a 12-bit offset, found in the immediate
field of the instruction, Instr11:0, which must be zero-extended to 32 bits, as
shown in Figure 7.21. As in the single-cycle processor, the Extend block takes
an ImmSrc control signal to specify an 8-, 12-, or 24-bit immediate to extend
for various types of instructions. The 32-bit extended immediate is called
ExtImm. To be consistent, we might store ExtImm in another nonarchitec-
tural register. However, ExtImm is a combinational function of Instr and
will not change while the current instruction is being processed, so there is
no need to dedicate a register to hold the constant value.

The address of the load is the sum of the base address and offset. We
use an ALU to compute this sum, as shown in Figure 7.22. ALUControl

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
PC'

Instr

CLK

WD

WE

CLK CLK

A

EN
EN

IRWrite

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

23:0

ImmSrc

Extend

Figure 7.21 Read one source from register file and extend the second source from the immediate field

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
PC'

Instr

SrcB

ALUResult

SrcA

ALUOut

CLK

ALUControl

AL
U

WD

WE

CLK CLK

A CLK

EN
EN

IRWrite

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

23:0

ImmSrc

Extend

Figure 7.22 Add base address to offset

408 CHAPTER SEVEN Microarchitecture

29

Execução da instrução LDR

to read the source register containing the base address. This register is
specified in the Rn field, Instr19:16. These bits of the instruction are con-
nected to address input A1 of the register file, as shown in Figure 7.21.
The register file reads the register into RD1. This value is stored in
another nonarchitectural register, A.

The LDR instruction also requires a 12-bit offset, found in the immediate
field of the instruction, Instr11:0, which must be zero-extended to 32 bits, as
shown in Figure 7.21. As in the single-cycle processor, the Extend block takes
an ImmSrc control signal to specify an 8-, 12-, or 24-bit immediate to extend
for various types of instructions. The 32-bit extended immediate is called
ExtImm. To be consistent, we might store ExtImm in another nonarchitec-
tural register. However, ExtImm is a combinational function of Instr and
will not change while the current instruction is being processed, so there is
no need to dedicate a register to hold the constant value.

The address of the load is the sum of the base address and offset. We
use an ALU to compute this sum, as shown in Figure 7.22. ALUControl

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
PC'

Instr

CLK

WD

WE

CLK CLK

A

EN
EN

IRWrite

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

23:0

ImmSrc

Extend

Figure 7.21 Read one source from register file and extend the second source from the immediate field

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
PC'

Instr

SrcB

ALUResult

SrcA

ALUOut

CLK

ALUControl

AL
U

WD

WE

CLK CLK

A CLK

EN
EN

IRWrite

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

23:0

ImmSrc

Extend

Figure 7.22 Add base address to offset

408 CHAPTER SEVEN Microarchitecture

30

Execução da instrução LDR

should be set to 00 to perform the addition. ALUResult is stored in a non-
architectural register called ALUOut.

The next step is to load the data from the calculated address in the
memory. We add a multiplexer in front of the memory to choose the mem-
ory address, Adr, from either the PC or ALUOut based on the AdrSrc
select, as shown in Figure 7.23. The data read from memory is stored in
another nonarchitectural register, calledData. Note that the address multi-
plexer permits us to reuse the memory during the LDR instruction. On a first
step, the address is taken from the PC to fetch the instruction. On a later
step, the address is taken from ALUOut to load the data. Hence, AdrSrc
must have different values on different steps. In Section 7.4.2, we develop
the FSM controller that generates these sequences of control signals.

Finally, the data is written back to the register file, as shown in
Figure 7.24. The destination register is specified by the Rd field of the
instruction, Instr15:12. The result comes from the Data register. Instead of

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A CLK

ENEN

IRWriteAdrSrc

R
eadD

ata

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

23:0

ImmSrc

Extend

Figure 7.23 Load data from memory

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

RegWrite ResultSrc

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A CLK

ENEN

IRWriteAdrSrcPCWrite

R
eadD

ata

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

15:12

23:0

00
01

Result

ImmSrc

Extend

Figure 7.24 Write data back to register file

7.4 Multicycle Processor 409

31

Execução da instrução LDR

should be set to 00 to perform the addition. ALUResult is stored in a non-
architectural register called ALUOut.

The next step is to load the data from the calculated address in the
memory. We add a multiplexer in front of the memory to choose the mem-
ory address, Adr, from either the PC or ALUOut based on the AdrSrc
select, as shown in Figure 7.23. The data read from memory is stored in
another nonarchitectural register, calledData. Note that the address multi-
plexer permits us to reuse the memory during the LDR instruction. On a first
step, the address is taken from the PC to fetch the instruction. On a later
step, the address is taken from ALUOut to load the data. Hence, AdrSrc
must have different values on different steps. In Section 7.4.2, we develop
the FSM controller that generates these sequences of control signals.

Finally, the data is written back to the register file, as shown in
Figure 7.24. The destination register is specified by the Rd field of the
instruction, Instr15:12. The result comes from the Data register. Instead of

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A CLK

ENEN

IRWriteAdrSrc

R
eadD

ata

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

23:0

ImmSrc

Extend

Figure 7.23 Load data from memory

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

RegWrite ResultSrc

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A CLK

ENEN

IRWriteAdrSrcPCWrite

R
eadD

ata

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

15:12

23:0

00
01

Result

ImmSrc

Extend

Figure 7.24 Write data back to register file

7.4 Multicycle Processor 409

32

Execução da instrução LDR

connecting theData register directly to the register fileWD3 write port, let
us add a multiplexer on the Result bus to choose either ALUOut or Data
before feeding Result back to the register file write port. This will be helpful
because other instructions will need to write a result from the ALU. The
RegWrite signal is 1 to indicate that the register file should be updated.

While all this is happening, the processor must update the program
counter by adding 4 to the old PC. In the single-cycle processor, a sepa-
rate adder was needed. In the multicycle processor, we can use the exist-
ing ALU during the fetch step because it is not busy. To do so, we must
insert source multiplexers to choose PC and the constant 4 as ALU inputs,
as shown in Figure 7.25. A multiplexer controlled by ALUSrcA chooses
either PC or register A as SrcA. Another multiplexer chooses either 4 or
ExtImm as SrcB. To update the PC, the ALU adds SrcA (PC) to SrcB
(4), and the result is written into the program counter. The ResultSrc mul-
tiplexer chooses this sum from ALUResult rather than ALUOut; this
requires a third input. The PCWrite control signal enables the PC to be
written only on certain cycles.

Again, we face the ARM architecture idiosyncrasy that reading R15
returns PC + 8 and writing R15 updates the PC. First, consider R15 reads.
We already computed PC+ 4 during the fetch step, and the sum is available
in the PC register. Thus, during the second step, we obtain PC + 8 by add-
ing four to the updated PC using the ALU. ALUResult is selected as the
Result and fed to the R15 input port of the register file. Figure 7.26 shows
the completed LDR datapath with this new connection. Thus, a read of R15,
which also occurs during the second step, produces the value PC + 8 on the
read data output of the register file. Writes to R15 require writing the PC
register instead of the register file. Thus, in the final step of the instruction,
Result must be routed to the PC register (instead of to the register file) and
PCWrite must be asserted (instead of RegWrite). The datapath already
accommodates this, so no datapath changes are required.

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

ALUSrcARegWrite ResultSrc

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

4

CLK

ENEN

ALUSrcBIRWriteAdrSrcPCWrite

R
ea

dD
ata

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

15:12

23:0

01
10

00
01
10

Result

ImmSrc

Extend

1
0

Figure 7.25 Increment PC by 4

410 CHAPTER SEVEN Microarchitecture

33

Execução da instrução LDR

STR
Next, let us extend the datapath to handle the STR instruction. Like LDR,
STR reads a base address from port 1 of the register file and extends the
immediate. The ALU adds the base address to the immediate to find the
memory address. All of these functions are already supported by existing
hardware in the datapath.

The only new feature of STR is that we must read a second register
from the register file and write it into the memory, as shown in Figure 7.27.
The register is specified in theRd field of the instruction, Instr15:12, which is
connected to the second port of the register file. When the register is read,
it is stored in a nonarchitectural register, WriteData. On the next step, it
is sent to the write data port (WD) of the data memory to be written.

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

ALUSrcARegWrite ResultSrc

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

4

CLK

ENEN

ALUSrcBIRWriteAdrSrcPCWrite

R
ea

dD
ata

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

15:12

23:0

01
10

00
01
10

Result

ImmSrc

Extend

1
0

Figure 7.26 Handle R15 reads and writes

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite ALUSrcARegWrite ResultSrc

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

W
riteD

a
ta

4

CLK

ENEN

ALUSrcBIRWriteAdrSrcPCWrite

R
ea

dD
ata

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

15:12

23:0

01
10

00
01
10

Result

ImmSrc

Extend

15:12

1
0

Figure 7.27 Enhanced datapath for STR instruction

7.4 Multicycle Processor 411

34

Execução da instrução STR

STR
Next, let us extend the datapath to handle the STR instruction. Like LDR,
STR reads a base address from port 1 of the register file and extends the
immediate. The ALU adds the base address to the immediate to find the
memory address. All of these functions are already supported by existing
hardware in the datapath.

The only new feature of STR is that we must read a second register
from the register file and write it into the memory, as shown in Figure 7.27.
The register is specified in theRd field of the instruction, Instr15:12, which is
connected to the second port of the register file. When the register is read,
it is stored in a nonarchitectural register, WriteData. On the next step, it
is sent to the write data port (WD) of the data memory to be written.

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

ALUSrcARegWrite ResultSrc

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

4

CLK

ENEN

ALUSrcBIRWriteAdrSrcPCWrite

R
ea

dD
ata

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

15:12

23:0

01
10

00
01
10

Result

ImmSrc

Extend

1
0

Figure 7.26 Handle R15 reads and writes

ExtImm

CLK

A
RD

Instr / Data
Memory

PC
0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite ALUSrcARegWrite ResultSrc

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

W
riteD

a
ta

4

CLK

ENEN

ALUSrcBIRWriteAdrSrcPCWrite

R
ea

dD
ata

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

19:16

15:12

23:0

01
10

00
01
10

Result

ImmSrc

Extend

15:12

1
0

Figure 7.27 Enhanced datapath for STR instruction

7.4 Multicycle Processor 411

35

Processador multiciclo completo

before sending it to PCWrite, RegWrite, and MemWrite so that updated
condition flags are not seen until the end of an instruction. The remainder
of this section develops the state transition diagram for the Main FSM.

The Main FSM produces multiplexer select, register enable, and
memory write enable signals for the datapath. To keep the following state
transition diagrams readable, only the relevant control signals are listed.
Select signals are listed only when their value matters; otherwise, they
are don’t care. Enable signals (RegW, MemW, IRWrite, and NextPC)
are listed only when they are asserted; otherwise, they are 0.

The first step for any instruction is to fetch the instruction frommemory
at the address held in the PC and to increment the PC to the next instruction.
The FSM enters this Fetch state on reset. The control signals are shown in
Figure 7.32. The data flow on this step is shown in Figure 7.33, with the
instruction fetch highlighted in blue and the PC increment highlighted
in gray. To read memory, AdrSrc= 0, so the address is taken from the PC.
IRWrite is asserted to write the instruction into the instruction register, IR.
Meanwhile, the PC should be incremented by 4 to point to the next instruc-
tion. Because the ALU is not being used for anything else, the processor can

ExtImm

CLK

A
RD

Instr / Data
Memory

PC 0
1

PC' Instr

SrcB

ALUResult

SrcA

ALUOut

MemWrite

ALUSrcA

RegWrite

ALUFlags

ResultSrc

CLK

CLK

ALUControl

AL
U

WD

WE

CLK

Adr

Data

CLK

CLK

A

W
riteD

ata
4

CLK

ENEN

ALUSrcB

IRWrite

AdrSrc
PCWrite

R
e

ad
D

a
ta

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

R15

0 1

0
1

R
egS

rc

19:16

15:12

23:0

3:0

15

00
01
10

00
01
10

Result

25:20

27:26 Op
Funct

Cond

Flags

15:12 Rd

Control
Unit

ImmSrc

Extend

31:28

RA1

RA2

1
0

0
1

Figure 7.30 Complete multicycle processor

414 CHAPTER SEVEN Microarchitecture

36

Unidade de controle

ImmSrc1:0

MemW

ResultSrc1:0

ALUSrcA

ALUControl1:0

Decoder

RegW

Cond3:0

Op1:0

Funct5:0

Rd3:0

RegSrc1:0

FlagW1:0

ALUFlags3:0

MemWrite
RegWrite

PCWritePCS
NextPC

IRWrite

ALUSrcB1:0

AdrSrc

C
onditional Logic

Main
FSM

ALUOp

ALU
Decoder

Op1:0

Funct5:0

Rd3:0

5,0

PC Logic PCS

FlagW1:0

ALUControl1:0

ImmSrc1:0

ALUSrcA

RegSrc1:0

MemW
RegW

4:0

NextPC
IRWrite

AdrSrc
ResultSrc1:0

ALUSrcB1:0

Instr
DecoderOp1:0

Cond3:0

Flags3:2

CLK

CLK
ALUFlags3:0

Flags1:0

[3:2]

[1:0]

PCS

[1]

[0]

Condition
C

heck
FlagW1:0

PCWrite

MemWrite

RegWrite

C
o

ndE
x

MemW

RegW

NextPC

CLK

CLK

Branch

(a) Control Unit

Decoder(b) (c) Conditional Logic

Register
Enables

Multiplexer
Selects

C
LK

F
lag

W
rite

1:0

Figure 7.31 Multicycle control unit

7.4 Multicycle Processor 415

37

Maquina de Estados

S0: Fetch
AdrSrc = 0
AluSrcA = 1

ALUSrcB = 10
ALUOp = 0

ResultSrc = 10
IRWrite
NextPC

S1: Decode
ALUSrcA = 1
ALUSrcB = 10

ALUOp = 0
ResultSrc = 10

S2: MemAdr
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 0

S3: MemRead
ResultSrc = 00

AdrSrc = 1

S8: ALUWB
ResultSrc = 00

RegW

S5: MemWrite
ResultSrc = 00

AdrSrc = 1
MemW

S7: ExecuteI
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 1

S9: Branch
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 0
ResultSrc = 10

Branch

Reset

Memory
Op = 01

Data Reg
Op = 00
Funct5 = 0

Branch
Op = 10

LDR STR

S4: MemWB
ResultSrc = 01

RegW

State Datapath µOp
Fetch Instr ←Mem[PC]; PC ← PC+4
Decode ALUOut ← PC+4
MemAdr ALUOut ← Rn + Imm
MemRead Data ← Mem[ALUOut]
MemWB Rd ← Data
MemWrite Mem[ALUOut] ← Rd
ExecuteR ALUOut ← Rn op Rm
ExecuteI ALUOut ← Rn op Imm
ALUWB Rd ← ALUOut
Branch PC ← R15 + offset

S6: ExecuteR
ALUSrcA = 0
ALUSrcB = 00

ALUOp = 1

Data Imm
Op = 00
Funct5 = 1

Funct0 = 1 Funct0 = 0

Figure 7.41 Complete multicycle control FSM

7.4 Multicycle Processor 423

S0: Fetch
AdrSrc = 0
AluSrcA = 1

ALUSrcB = 10
ALUOp = 0

ResultSrc = 10
IRWrite
NextPC

S1: Decode
ALUSrcA = 1
ALUSrcB = 10

ALUOp = 0
ResultSrc = 10

S2: MemAdr
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 0

S3: MemRead
ResultSrc = 00

AdrSrc = 1

S8: ALUWB
ResultSrc = 00

RegW

S5: MemWrite
ResultSrc = 00

AdrSrc = 1
MemW

S7: ExecuteI
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 1

S9: Branch
ALUSrcA = 0
ALUSrcB = 01

ALUOp = 0
ResultSrc = 10

Branch

Reset

Memory
Op = 01

Data Reg
Op = 00
Funct5 = 0

Branch
Op = 10

LDR STR

S4: MemWB
ResultSrc = 01

RegW

State Datapath µOp
Fetch Instr ←Mem[PC]; PC ← PC+4
Decode ALUOut ← PC+4
MemAdr ALUOut ← Rn + Imm
MemRead Data ← Mem[ALUOut]
MemWB Rd ← Data
MemWrite Mem[ALUOut] ← Rd
ExecuteR ALUOut ← Rn op Rm
ExecuteI ALUOut ← Rn op Imm
ALUWB Rd ← ALUOut
Branch PC ← R15 + offset

S6: ExecuteR
ALUSrcA = 0
ALUSrcB = 00

ALUOp = 1

Data Imm
Op = 00
Funct5 = 1

Funct0 = 1 Funct0 = 0

Figure 7.41 Complete multicycle control FSM

7.4 Multicycle Processor 423

38

Processador pipeline

Processador pipeline

Figure 7.42 shows a timing diagram comparing the single-cycle and
pipelined processors. Time is on the horizontal axis, and instructions
are on the vertical axis. The diagram assumes the logic element delays
from Table 7.5 but ignores the delays of multiplexers and registers. In
the single-cycle processor (Figure 7.42(a)), the first instruction is read
from memory at time 0; next, the operands are read from the register file;
and, then, the ALU executes the necessary computation. Finally, the data
memory may be accessed, and the result is written back to the register file
by 680 ps. The second instruction begins when the first completes. Hence,
in this diagram, the single-cycle processor has an instruction latency of
200+ 100+ 120+ 200+ 60= 680 ps and a throughput of 1 instruction
per 680 ps (1.47 billion instructions per second).

In the pipelined processor (Figure 7.42(b)), the length of a pipeline
stage is set at 200 ps by the slowest stage, the memory access (in the Fetch
or Memory stage). At time 0, the first instruction is fetched from memory.
At 200 ps, the first instruction enters the Decode stage, and a second
instruction is fetched. At 400 ps, the first instruction executes, the second
instruction enters the Decode stage, and a third instruction is fetched.
And so forth, until all the instructions complete. The instruction latency
is 5 × 200 = 1000 ps. The throughput is 1 instruction per 200 ps (5 billion
instructions per second). Because the stages are not perfectly balanced
with equal amounts of logic, the latency is longer for the pipelined

Time (ps)
Instr

1

2

0 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 15001000

(a)

Instr

1

2

(b)

3

Fetch
Instruction

Dec
Read
Reg

Execute
ALU

Memory
Read/Write

Wr
Reg

Fetch
Instruction

Dec
Read
Reg

Execute
ALU

Memory
Read/Write

Wr
Reg

Fetch
Instruction

Dec
Read
Reg

Execute
ALU

Memory
Read/Write

Wr
Reg

Fetch
Instruction

Dec
Read
Reg

Execute
ALU

Memory
Read/Write

Wr
Reg

Fetch
Instruction

Dec
Read
Reg

Execute
ALU

Wr
Reg

Memory
Read/Write

Figure 7.42 Timing diagrams: (a) single-cycle processor and (b) pipelined processor

426 CHAPTER SEVEN Microarchitecture

39

Processador pipeline

processor than for the single-cycle processor. Similarly, the throughput is
not quite five-times as great for a five-stage pipeline as for the single-cycle
processor. Nevertheless, the throughput advantage is substantial.

Figure 7.43 shows an abstracted view of the pipeline in operation in
which each stage is represented pictorially. Each pipeline stage is repre-
sented with its major component—instruction memory (IM), register file
(RF) read, ALU execution, data memory (DM), and register file write-
back—to illustrate the flow of instructions through the pipeline. Reading
across a row shows the clock cycles in which a particular instruction is in
each stage. For example, the SUB instruction is fetched in cycle 3 and exe-
cuted in cycle 5. Reading down a column shows what the various pipeline
stages are doing on a particular cycle. For example, in cycle 6, the ORR
instruction is being fetched from instruction memory, whereas R1 is being
read from the register file, the ALU is computing R12 AND R13, the
data memory is idle, and the register file is writing a sum to R3. Stages
are shaded to indicate when they are used. For example, the data
memory is used by LDR in cycle 4 and by STR in cycle 8. The instruction
memory and ALU are used in every cycle. The register file is written by
every instruction except STR. In the pipelined processor, the register file
is written in the first part of a cycle and read in the second part, as sug-
gested by the shading. This way, data can be written and read back within
a single cycle.

A central challenge in pipelined systems is handling hazards that
occur when the results of one instruction are needed by a subsequent
instruction before the former instruction has completed. For example, if

Time (cycles)

LDR R2, [R0, #40] RF 40
R0

RF
R2+ DM

RF R10
R9

RF
R3+ DM

RF R5
R1

RF
R4- DM

RF R13
R12

RF
R5& DM

RF 20
R1

RF
R6+ DM

RF 42
R11

RF
R7| DM

ADD R3, R9, R10

SUB R4, R1, R5

AND R5, R12, R13

STR R6, [R1, #20]

ORR R7, R11, #42

1 2 3 4 5 6 7 8 9 10

ADD

IM

IM

IM

IM

IM

IM
LDR

SUB

AND

STR

ORR

Figure 7.43 Abstract view of pipeline in operation

7.5 Pipelined Processor 427

40

Processador pipeline

the ADD in Figure 7.43 used R2 rather than R10, a hazard would occur
because the R2 register has not been written by the LDR by the time it is
read by the ADD. After designing the pipelined datapath and control, this
section explores forwarding, stalls, and flushes as methods to resolve
hazards. Finally, this section revisits performance analysis considering
sequencing overhead and the impact of hazards.

7 . 5 . 1 Pipelined Datapath

The pipelined datapath is formed by chopping the single-cycle datapath
into five stages separated by pipeline registers.

Figure 7.44(a) shows the single-cycle datapath stretched out to leave
room for the pipeline registers. Figure 7.44(b) shows the pipelined data-
path formed by inserting four pipeline registers to separate the datapath
into five stages. The stages and their boundaries are indicated in blue.
Signals are given a suffix (F, D, E, M, or W) to indicate the stage in which
they reside.

The register file is peculiar because it is read in the Decode stage and
written in the Writeback stage. It is drawn in the Decode stage, but the
write address and data come from the Writeback stage. This feedback will
lead to pipeline hazards, which are discussed in Section 7.5.3. The register
file in the pipelined processor writes on the falling edge of CLK so that it

ExtImm

CLK

A RD

Instruction
Memory

+
4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

0
1

A RD
Data

Memory
WD

WE

1
0

PC1
0

PC'

Instr

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

CLK

A
LU

PCPlus8
R15

3:0

+

4

15
RA1

RA2

Extend

0
1

0
1

ExtImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

0
1

A RD
Data

Memory
WD

WE

1
0

PCF1
0

PC'

In
strD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

A
LU

PCPlus8
R15

3:0

+

4

15
RA1D

RA2D

Extend

0
1

0
1

(a)

(b)

CLK CLK CLK CLK

Fetch Decode Execute Memory Writeback

In
strF

ALUOutM ALUOutW

WA3D

Figure 7.44 Datapaths: (a) single-cycle and (b) pipelined

428 CHAPTER SEVEN Microarchitecture

41

Referências

Para saber mais e praticar...

• https://www.arm.com/resources

• https://salmanarif.bitbucket.io/visual/

• https://cpulator.01xz.net/?sys=arm

• https://azm.azerialabs.com/

• https://www.edaplayground.com/x/vcGc

• https://booksite.elsevier.com/9780128000564/lab_materials.php

42

https://www.arm.com/resources
https://salmanarif.bitbucket.io/visual/
https://cpulator.01xz.net/?sys=arm
https://azm.azerialabs.com/
https://www.edaplayground.com/x/vcGc
https://booksite.elsevier.com/9780128000564/lab_materials.php

Bibliografia

David Harris and Sarah Harris.

Digital Design and Computer Architecture: ARM® Edition.

Morgan Kaufmann, 2016.

43

	Considerações iniciais
	Codificação das instruções
	Processador monociclo
	Processador multiciclo
	Processador pipeline
	Referências

